135 research outputs found
Reduction and Emergence in Bose-Einstein Condensates
A closer look at some proposed Gedanken-experiments on BECs promises to shed
light on several aspects of reduction and emergence in physics. These include
the relations between classical descriptions and different quantum treatments
of macroscopic systems, and the emergence of new properties and even new
objects as a result of spontaneous symmetry breaking
Characterizing Width Uniformity by Wave Propagation
This work describes a novel image analysis approach to characterize the
uniformity of objects in agglomerates by using the propagation of normal
wavefronts. The problem of width uniformity is discussed and its importance for
the characterization of composite structures normally found in physics and
biology highlighted. The methodology involves identifying each cluster (i.e.
connected component) of interest, which can correspond to objects or voids, and
estimating the respective medial axes by using a recently proposed wavefront
propagation approach, which is briefly reviewed. The distance values along such
axes are identified and their mean and standard deviation values obtained. As
illustrated with respect to synthetic and real objects (in vitro cultures of
neuronal cells), the combined use of these two features provide a powerful
description of the uniformity of the separation between the objects, presenting
potential for several applications in material sciences and biology.Comment: 14 pages, 23 figures, 1 table, 1 referenc
Nonlocal appearance of a macroscopic angular momentum
We discuss a type of measurement in which a macroscopically large angular
momentum (spin) is "created" nonlocally by the measurement of just a few atoms
from a double Fock state. This procedure apparently leads to a blatant
nonconservation of a macroscopic variable - the local angular momentum. We
argue that while this gedankenexperiment provides a striking illustration of
several counter-intuitive features of quantum mechanics, it does not imply a
non-local violation of the conservation of angular momentum.Comment: 10 pages, 1 figur
Generation of entangled states and error protection from adiabatic avoided level crossings
We consider the environment-affected dynamics of self-interacting
particles living in one-dimensional double wells. Two topics are dealt with.
First, we consider the production of entangled states of two-level systems. We
show that by adiabatically varying the well biases we may dynamically generate
maximally entangled states, starting from initially unentangled product states.
Entanglement degradation due to a common type of environmental influence is
then computed by solving a master equation. However, we also demonstrate that
entanglement production is unaffected if the system-environment coupling is of
the type that induces ``motional narrowing''. As our second but related topic,
we construct a different master equation that seamlessly merges error
protection/detection dynamics for quantum information with the environmental
couplings responsible for producing the errors in the first place. Adiabatic
avoided crossing schemes are used in both topics.Comment: 14 pages, 6 figures. Minor changes. To appear in Phys. Rev.
Quantum Mechanics and Leggett's Inequalities
We show that when the proper description of the behaviour of individual
photons or spin 1/2 particles in a spherically symmetric entangled pair is done
through the use of the density matrix, the Leggett's inequality is not violated
by quantum mechanics.Comment: 7 pages, no figures. A missing global sign in the r.h.s. of eq.
(4.10) in section 4 of version 1 (v1) invalidates the conclusion of that
particular section, which is then suppressed in the present version (v2
Relational EPR
We study the EPR-type correlations from the perspective of the relational
interpretation of quantum mechanics. We argue that these correlations do not
entail any form of 'non-locality', when viewed in the context of this
interpretation. The abandonment of strict Einstein realism implied by the
relational stance permits to reconcile quantum mechanics, completeness,
(operationally defined) separability, and locality.Comment: Revised, published versio
Cosmological black holes as voids progenitors. I. Simulations
Cosmological black holes (CBH), i.e. black holes with masses larger than
$10^{14} solar masses, have been proposed as possible progenitors of galaxy
voids (Stornaiolo 2002). The presence of a CBH in the central regions of a void
should induce significant gravitational lensing effects and in this paper we
discuss such gravitational signatures using simulated data. These signatures
may be summarized as follows: i) a blind spot in the projected position of the
CBH where no objects can be detected; ii) an excess of faint secondary images;
iii) an excess of double images having a characteristic angular separation. All
these signatures are shown to be detectable in future deep surveys.Comment: 5 pages, 5 figures, submitted to MNRA
Many particle entanglement in two-component Bose-Einstein Condensates
We investigate schemes to dynamically create many particle entangled states
of a two component Bose-Einstein condensate in a very short time proportional
to 1/N where is the number of condensate particles. For small we
compare exact numerical calculations with analytical semiclassical estimates
and find very good agreement for . We also estimate the effect of
decoherence on our scheme, study possible scenarios for measuring the entangled
states, and investigate experimental imperfections.Comment: 12 pages, 8 figure
From dynamical scaling to local scale-invariance: a tutorial
Dynamical scaling arises naturally in various many-body systems far from
equilibrium. After a short historical overview, the elements of possible
extensions of dynamical scaling to a local scale-invariance will be introduced.
Schr\"odinger-invariance, the most simple example of local scale-invariance,
will be introduced as a dynamical symmetry in the Edwards-Wilkinson
universality class of interface growth. The Lie algebra construction, its
representations and the Bargman superselection rules will be combined with
non-equilibrium Janssen-de Dominicis field-theory to produce explicit
predictions for responses and correlators, which can be compared to the results
of explicit model studies.
At the next level, the study of non-stationary states requires to go over,
from Schr\"odinger-invariance, to ageing-invariance. The ageing algebra admits
new representations, which acts as dynamical symmetries on more general
equations, and imply that each non-equilibrium scaling operator is
characterised by two distinct, independent scaling dimensions. Tests of
ageing-invariance are described, in the Glauber-Ising and spherical models of a
phase-ordering ferromagnet and the Arcetri model of interface growth.Comment: 1+ 23 pages, 2 figures, final for
New loophole for the EPR paradox
We exhibit a classical model free from any paradox which exactly simulates
the spin EPR test. We conclude that Bell's inequality violation is a strictly
classical phenomenon, contrary to a general belief.Comment: Conversion from html to latex only. 16 pages, 1 figure late
- …