35 research outputs found

    A New Way of Identifying Biomarkers in Biomedical Basic-Research Studies

    Get PDF
    A simple, nonparametric and distribution free method was developed for quick identification of the most meaningful biomarkers among a number of candidates in complex biological phenomena, especially in relatively small samples. This method is independent of rigid model forms or other link functions. It may be applied both to metric and non-metric data as well as to independent or matched parallel samples. With this method identification of the most relevant biomarkers is not based on inferential methods; therefore, its application does not require corrections of the level of significance, even in cases of thousands of variables. Hence, the introduced method is appropriate to analyze and evaluate data of complex investigations in clinical and pre-clinical basic research, such as gene or protein expressions, phenotype-genotype associations in case-control studies on the basis of thousands of genes and SNPs (single nucleotide polymorphism), search of prevalence in sleep EEG-Data, functional magnetic resonance imaging (fMRI) or others

    Adaptive Strategy for the Statistical Analysis of Connectomes

    Get PDF
    We study an adaptive statistical approach to analyze brain networks represented by brain connection matrices of interregional connectivity (connectomes). Our approach is at a middle level between a global analysis and single connections analysis by considering subnetworks of the global brain network. These subnetworks represent either the inter-connectivity between two brain anatomical regions or by the intra-connectivity within the same brain anatomical region. An appropriate summary statistic, that characterizes a meaningful feature of the subnetwork, is evaluated. Based on this summary statistic, a statistical test is performed to derive the corresponding p-value. The reformulation of the problem in this way reduces the number of statistical tests in an orderly fashion based on our understanding of the problem. Considering the global testing problem, the p-values are corrected to control the rate of false discoveries. Finally, the procedure is followed by a local investigation within the significant subnetworks. We contrast this strategy with the one based on the individual measures in terms of power. We show that this strategy has a great potential, in particular in cases where the subnetworks are well defined and the summary statistics are properly chosen. As an application example, we compare structural brain connection matrices of two groups of subjects with a 22q11.2 deletion syndrome, distinguished by their IQ scores

    A Revised Simplex Search Procedure for Stochastic Simulation Response Surface Optimization

    No full text

    Multiple Comparison Methods for Means

    No full text
    corecore