5 research outputs found

    Fatigue in primary Sjögren's syndrome (pSS) is associated with lower levels of proinflammatory cytokines: a validation study

    Get PDF
    Primary Sjögren’s syndrome (pSS) is a chronic autoimmune rheumatic disease with symptoms including dryness, fatigue, and pain. The previous work by our group has suggested that certain proinflammatory cytokines are inversely related to patient-reported levels of fatigue. To date, these findings have not been validated. This study aims to validate this observation. Blood levels of seven cytokines were measured in 120 patients with pSS from the United Kingdom Primary Sjögren’s Syndrome Registry and 30 age-matched healthy non-fatigued controls. Patient-reported scores for fatigue were classified according to severity and compared to cytokine levels using analysis of variance. The differences between cytokines in cases and controls were evaluated using Wilcoxon test. A logistic regression model was used to determine the most important identifiers of fatigue. Five cytokines, interferon-γ-induced protein-10 (IP-10), tumour necrosis factor-α (TNFα), interferon-α (IFNα), interferon-γ (IFN-γ), and lymphotoxin-α (LT-α) were significantly higher in patients with pSS (n = 120) compared to non-fatigued controls (n = 30). Levels of two proinflammatory cytokines, TNF-α (p = 0.021) and LT-α (p = 0.043), were inversely related to patient-reported levels of fatigue. Cytokine levels, disease-specific and clinical parameters as well as pain, anxiety, and depression were used as predictors in our validation model. The model correctly identifies fatigue levels with 85% accuracy. Consistent with the original study, pain, depression, and proinflammatory cytokines appear to be the most powerful predictors of fatigue in pSS. TNF-α and LT-α have an inverse relationship with fatigue severity in pSS challenging the notion that proinflammatory cytokines directly mediate fatigue in chronic immunological conditions

    Symptom-based stratification of patients with primary Sjögren's syndrome: multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials

    Get PDF
    Background Heterogeneity is a major obstacle to developing effective treatments for patients with primary Sjögren's syndrome. We aimed to develop a robust method for stratification, exploiting heterogeneity in patient-reported symptoms, and to relate these differences to pathobiology and therapeutic response. Methods We did hierarchical cluster analysis using five common symptoms associated with primary Sjögren's syndrome (pain, fatigue, dryness, anxiety, and depression), followed by multinomial logistic regression to identify subgroups in the UK Primary Sjögren's Syndrome Registry (UKPSSR). We assessed clinical and biological differences between these subgroups, including transcriptional differences in peripheral blood. Patients from two independent validation cohorts in Norway and France were used to confirm patient stratification. Data from two phase 3 clinical trials were similarly stratified to assess the differences between subgroups in treatment response to hydroxychloroquine and rituximab. Findings In the UKPSSR cohort (n=608), we identified four subgroups: Low symptom burden (LSB), high symptom burden (HSB), dryness dominant with fatigue (DDF), and pain dominant with fatigue (PDF). Significant differences in peripheral blood lymphocyte counts, anti-SSA and anti-SSB antibody positivity, as well as serum IgG, κ-free light chain, β2-microglobulin, and CXCL13 concentrations were observed between these subgroups, along with differentially expressed transcriptomic modules in peripheral blood. Similar findings were observed in the independent validation cohorts (n=396). Reanalysis of trial data stratifying patients into these subgroups suggested a treatment effect with hydroxychloroquine in the HSB subgroup and with rituximab in the DDF subgroup compared with placebo. Interpretation Stratification on the basis of patient-reported symptoms of patients with primary Sjögren's syndrome revealed distinct pathobiological endotypes with distinct responses to immunomodulatory treatments. Our data have important implications for clinical management, trial design, and therapeutic development. Similar stratification approaches might be useful for patients with other chronic immune-mediated diseases. Funding UK Medical Research Council, British Sjogren's Syndrome Association, French Ministry of Health, Arthritis Research UK, Foundation for Research in Rheumatology

    B-cell activity markers are associated with different disease activity domains in primary Sjögren's syndrome

    Get PDF
    OBJECTIVES: B-cell activating factor (BAFF), β-2 microglobulin (β2M) and serum free light chains (FLCs) are elevated in primary SS (pSS) and associated with disease activity. We aimed to investigate their association with the individual disease activity domains of the EULAR Sjögren’s Syndrome Disease Activity Index (ESSDAI) in a large well-characterized pSS cohort. METHODS: Sera from pSS patients enrolled in the UK Primary Sjögren’s Syndrome Registry (UKPSSR) (n = 553) and healthy controls (n = 286) were analysed for FLC (κ and λ), BAFF and β2 M. Pearson correlation coefficients were calculated for patient clinical characteristics, including salivary flow, Schirmer’s test, EULAR Sjögren’s Syndrome Patient Reported Index and serum IgG levels. Poisson regression was performed to identify independent predictors of total ESSDAI and ClinESSDAI (validated ESSDAI minus the biological domain) scores and their domains. RESULTS: Levels of BAFF, β2M and FLCs were higher in pSS patients compared to controls. All three biomarkers associated significantly with the ESSDAI and the ClinESSDAI. BAFF associated with the peripheral nervous system domain of the ESSDAI, whereas β2M and FLCs associated with the cutaneous, biological and renal domains. Multivariate analysis showed BAFF, β2M and their interaction to be independent predictors of ESSDAI/ClinESSDAI. FLCs were also shown to associate with the ESSDAI/ClinESSDAI but not independent of serum IgG. CONCLUSION: All biomarkers were associated with total ESSDAI scores but with differing domain associations. These findings should encourage further investigation of these biomarkers in longitudinal studies and against other disease activity measures

    Does urinary cytology have a role in haematuria investigations?

    No full text
    Objectives: To determine the diagnostic accuracy of urinary cytology to diagnose bladder cancer and upper tract urothelial cancer (UTUC) as well as the outcome of patients with a positive urine cytology and normal haematuria investigations in patients in a multicentre prospective observational study of patients investigated for haematuria. Patient and methods: The DETECT I study (clinicaltrials.gov NCT02676180) recruited patients presenting with haematuria following referral to secondary case at 40 hospitals. All patients had a cystoscopy and upper tract imaging (renal bladder ultrasound [RBUS] and/ or CT urogram [CTU]). Patients, where urine cytology were performed, were sub-analysed. The reference standard for the diagnosis of bladder cancer and UTUC was histological confirmation of cancer. A positive urine cytology was defined as a urine cytology suspicious for neoplastic cells or atypical cells. Results: Of the 3 556 patients recruited, urine cytology was performed in 567 (15.9%) patients from nine hospitals. Median time between positive urine cytology and endoscopic tumour resection was 27 (IQR: 21.3–33.8) days. Bladder cancer was diagnosed in 39 (6.9%) patients and UTUC in 8 (1.4%) patients. The accuracy of urinary cytology for the diagnosis of bladder cancer and UTUC was: sensitivity 43.5%, specificity 95.7%, positive predictive value (PPV) 47.6% and negative predictive value (NPV) 94.9%. A total of 21 bladder cancers and 5 UTUC were missed. Bladder cancers missed according to grade and stage were as follows: 4 (19%) were ≥ pT2, 2 (9.5%) were G3 pT1, 10 (47.6%) were G3/2 pTa and 5 (23.8%) were G1 pTa. High-risk cancer was confirmed in 8 (38%) patients. There was a marginal improvement in sensitivity (57.7%) for high-risk cancers. When urine cytology was combined with imaging, the diagnostic performance improved with CTU (sensitivity 90.2%, specificity 94.9%) superior to RBUS (sensitivity 66.7%, specificity 96.7%). False positive cytology results were confirmed in 22 patients, of which 12 (54.5%) had further invasive tests and 5 (22.7%) had a repeat cytology. No cancer was identified in these patients during follow-up. Conclusions: Urine cytology will miss a significant number of muscle-invasive bladder cancer and high-risk disease. Our results suggest that urine cytology should not be routinely performed as part of haematuria investigations. The role of urine cytology in select cases should be considered in the context of the impact of a false positive result leading to further potentially invasive tests conducted under general anaesthesia

    Development and validation of a haematuria cancer risk score to identify patients at risk of harbouring cancer

    No full text
    Background: A lack of consensus exists amongst national guidelines regarding who should be investigated for haematuria. Type of haematuria and age-specific thresholds are frequently used to guide referral for the investigation of haematuria. Objectives: To develop and externally validate the haematuria cancer risk score (HCRS) to improve patient selection for the investigation of haematuria. Methods: Development cohort comprise of 3539 prospectively recruited patients recruited at 40 UK hospitals (DETECT 1; ClinicalTrials.gov: NCT02676180) and validation cohort comprise of 656 Swiss patients. All patients were aged >18 years and referred to hospital for the evaluation of visible and nonvisible haematuria. Sensitivity and specificity of the HCRS in the validation cohort were derived from a cut-off identified from the discovery cohort. Results: Patient age, gender, type of haematuria and smoking history were used to develop the HCRS. HCRS validation achieves good discrimination (AUC 0.835; 95% CI: 0.789–0.880) and calibration (calibration slope = 1.215) with no significant overfitting (P = 0.151). The HCRS detected 11.4% (n = 8) more cancers which would be missed by UK National Institute for Health and Clinical Excellence guidelines. The American Urological Association guidelines would identify all cancers with a specificity of 12.6% compared to 30.5% achieved by the HCRS. All patients with upper tract cancers would have been identified. Conclusion: The HCRS offers good discriminatory accuracy which is superior to existing guidelines. The simplicity of the model would facilitate adoption and improve patient and physician decision-making
    corecore