258 research outputs found

    A microfluidic device for the study of the orientational dynamics of microrods

    Full text link
    We describe a microfluidic device for studying the orientational dynamics of microrods. The device enables us to experimentally investigate the tumbling of microrods immersed in the shear flow in a microfluidic channel with a depth of 400 mu and a width of 2.5 mm. The orientational dynamics was recorded using a 20 X microscopic objective and a CCD camera. The microrods were produced by shearing microdroplets of photocurable epoxy resin. We show different examples of empirically observed tumbling. On the one hand we find that short stretches of the experimentally determined time series are well described by fits to solutions of Jeffery's approximate equation of motion [Jeffery, Proc. R. Soc. London. 102 (1922), 161-179]. On the other hand we find that the empirically observed trajectories drift between different solutions of Jeffery's equation. We discuss possible causes of this orbit drift.Comment: 11 pages, 8 figure

    Individualised risk assessment for diabetic retinopathy and optimisation of screening intervals: a scientific approach to reducing healthcare costs.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.To validate a mathematical algorithm that calculates risk of diabetic retinopathy progression in a diabetic population with UK staging (R0-3; M1) of diabetic retinopathy. To establish the utility of the algorithm to reduce screening frequency in this cohort, while maintaining safety standards.The cohort of 9690 diabetic individuals in England, followed for 2 years. The algorithms calculated individual risk for development of preproliferative retinopathy (R2), active proliferative retinopathy (R3A) and diabetic maculopathy (M1) based on clinical data. Screening intervals were determined such that the increase in risk of developing certain stages of retinopathy between screenings was the same for all patients and identical to mean risk in fixed annual screening. Receiver operating characteristic curves were drawn and area under the curve calculated to estimate the prediction capability.The algorithm predicts the occurrence of the given diabetic retinopathy stages with area under the curve =80% for patients with type II diabetes (CI 0.78 to 0.81). Of the cohort 64% is at less than 5% risk of progression to R2, R3A or M1 within 2 years. By applying a 2 year ceiling to the screening interval, patients with type II diabetes are screened on average every 20 months, which is a 40% reduction in frequency compared with annual screening.The algorithm reliably identifies patients at high risk of developing advanced stages of diabetic retinopathy, including preproliferative R2, active proliferative R3A and maculopathy M1. Majority of patients have less than 5% risk of progression between stages within a year and a small high-risk group is identified. Screening visit frequency and presumably costs in a diabetic retinopathy screening system can be reduced by 40% by using a 2 year ceiling. Individualised risk assessment with 2 year ceiling on screening intervals may be a pragmatic next step in diabetic retinopathy screening in UK, in that safety is maximised and cost reduced by about 40%.Icelandic Research Counci

    Schwinger-boson approach to quantum spin systems: Gaussian fluctuactions in the "natural" gauge

    Full text link
    We compute the Gaussian-fluctuation corrections to the saddle-point Schwinger-boson results using collective coordinate methods. Concrete application to investigate the frustrated J1-J2 antiferromagnet on the square lattice shows that, unlike the saddle-point predictions, there is a quantum nonmagnetic phase for 0.53 < J2/J1 < 0.64. This result is obtained by considering the corrections to the spin stiffness on large lattices and extrapolating to the thermodynamic limit, which avoids the infinite-lattice infrared divergencies associated to Bose condensation. The very good agreement of our results with exact numerical values on finite clusters lends support to the calculational scheme employed.Comment: 4 pages, Latex, 3 figures included as eps files,minor correction

    Novel spin-liquid states in the frustrated Heisenberg antiferromagnet on the honeycomb lattice

    Full text link
    Recent experiment on a honeycomb-lattice Heisenberg antiferromagnet (AF) Bi3_3Mn4_4O12_{12}(NO3_3) revealed a novel spin-liquid-like behavior down to low temperature, which was ascribed to the frustration effect due to the competition between the AF nearest- and next-nearest-neighbor interactions J1J_1 and J2J_2. Motivated by the experiment, we study the ordering of the J1J_1 -J2J_2 frustrated classical Heisenberg AF on a honeycomb lattice both by a low-temperature expansion and a Monte Carlo simulation. The model has been known to possess a massive degeneracy of the ground state, which, however, might be lifted due to thermal fluctuations leading to a unique ordered state, the effect known as 'order-by-disorder'. We find that the model exhibits an intriguing ordering behavior, particularly near the AF phase boundary. The energy scale of the order-by-disorder is suppressed there down to extremely low temperatures, giving rise to exotic spin-liquid states like a "ring-liquid" or a "pancake-liquid" state accompanied by the characteristic spin structure factor and the field-induced antiferromagnetism. We argue that the recent experimental data are explicable if the system is in such exotic spin-liquid states

    Spin Liquid Phases in 2D Frustrated XY Model

    Full text link
    In this paper we consider the J1J2J3J_1-J_2-J_3 classical and quantum 2D XY model. Spin wave calculations show that a spin liquid phase still exists in the quantum case as for Heisenberg models. We formulate a semiclassical approach of these models based on spin wave action and use a variational method to study the role played by vortices. Liquid and crystal phases of vortex could emerge in this description. These phases seem to be directly correlated with the spin liquid one and to its crystalline interpretation.Comment: 16 pages, Latex, 4 figures. To be published in Phys. Rev.

    Elevated visual dependency in young adults after chemotherapy in childhood

    Get PDF
    Chemotherapy in childhood can result in long-term neurophysiological side-effects, which could extend to visual processing, specifically the degree to which a person relies on vision to determine vertical and horizontal (visual dependency). We investigated whether adults treated with chemotherapy in childhood experience elevated visual dependency compared to controls and whether any difference is associated with the age at which subjects were treated. Visual dependency was measured in 23 subjects (mean age 25.3 years) treated in childhood with chemotherapy (CTS) for malignant, solid, non-CNS tumors. We also stratified CTS into two groups: those treated before 12 years of age and those treated from 12 years of age and older. Results were compared to 25 healthy, age-matched controls. The subjective visual horizontal (SVH) and vertical (SVV) orientations was recorded by having subjects position an illuminated rod to their perceived horizontal and vertical with and without a surrounding frame tilted clockwise and counter-clockwise 20° from vertical. There was no significant difference in rod accuracy between any CTS groups and controls without a frame. However, when assessing visual dependency using a frame, CTS in general (p = 0.006) and especially CTS treated before 12 years of age (p = 0.001) tilted the rod significantly further in the direction of the frame compared to controls. Our findings suggest that chemotherapy treatment before 12 years of age is associated with elevated visual dependency compared to controls, implying a visual bias during spatial activities. Clinicians should be aware of symptoms such as visual vertigo in adults treated with chemotherapy in childhood

    Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators

    Full text link
    We discuss the general theoretical arguments advanced earlier for the T=0 global phase diagram of antiferromagnetic Kondo lattice systems, distinguishing between the established and the conjectured. In addition to the well-known phase of a paramagnetic metal with a "large" Fermi surface (P_L), there is also an antiferromagnetic phase with a "small" Fermi surface (AF_S). We provide the details of the derivation of a quantum non-linear sigma-model (QNLsM) representation of the Kondo lattice Hamiltonian, which leads to an effective field theory containing both low-energy fermions in the vicinity of a Fermi surface and low-energy bosons near zero momentum. An asymptotically exact analysis of this effective field theory is made possible through the development of a renormalization group procedure for mixed fermion-boson systems. Considerations on how to connect the AF_S and P_L phases lead to a global phase diagram, which not only puts into perspective the theory of local quantum criticality for antiferromagnetic heavy fermion metals, but also provides the basis to understand the surprising recent experiments in chemically-doped as well as pressurized YbRh2Si2. We point out that the AF_S phase still occurs for the case of an equal number of spin-1/2 local moments and conduction electrons. This observation raises the prospect for a global phase diagram of heavy fermion systems in the Kondo-insulator regime. Finally, we discuss the connection between the Kondo breakdown physics discussed here for the Kondo lattice systems and the non-Fermi liquid behavior recently studied from a holographic perspective.Comment: (v3) leftover typos corrected. (v2) Published version. 32 pages, 4 figures. Section 7, on the connection between the Kondo lattice systems and the holographic models of non-Fermi liquid, is expanded. (v1) special issue of JLTP on quantum criticalit

    Pairing and Density Correlations of Stripe Electrons in a Two-Dimensional Antiferromagnet

    Full text link
    We study a one-dimensional electron liquid embedded in a 2D antiferromagnetic insulator, and coupled to it via a weak antiferromagnetic spin exchange interaction. We argue that this model may qualitatively capture the physics of a single charge stripe in the cuprates on length- and time scales shorter than those set by its fluctuation dynamics. Using a local mean-field approach we identify the low-energy effective theory that describes the electronic spin sector of the stripe as that of a sine-Gordon model. We determine its phases via a perturbative renormalization group analysis. For realistic values of the model parameters we obtain a phase characterized by enhanced spin density and composite charge density wave correlations, coexisting with subleading triplet and composite singlet pairing correlations. This result is shown to be independent of the spatial orientation of the stripe on the square lattice. Slow transverse fluctuations of the stripes tend to suppress the density correlations, thus promoting the pairing instabilities. The largest amplitudes for the composite instabilities appear when the stripe forms an antiphase domain wall in the antiferromagnet. For twisted spin alignments the amplitudes decrease and leave room for a new type of composite pairing correlation, breaking parity but preserving time reversal symmetry.Comment: Revtex, 28 pages incl. 5 figure

    Finite-Size Scaling of the Ground State Parameters of the Two-Dimensional Heisenberg Model

    Full text link
    The ground state parameters of the two-dimensional S=1/2 antiferromagnetic Heisenberg model are calculated using the Stochastic Series Expansion quantum Monte Carlo method for L*L lattices with L up to 16. The finite-size results for the energy E, the sublattice magnetization M, the long-wavelength susceptibility chi_perp(q=2*pi/L), and the spin stiffness rho_s, are extrapolated to the thermodynamic limit using fits to polynomials in 1/L, constrained by scaling forms previously obtained from renormalization group calculations for the nonlinear sigma model and chiral perturbation theory. The results are fully consistent with the predicted leading finite-size corrections and are of sufficient accuracy for extracting also subleading terms. The subleading energy correction (proportional to 1/L^4) agrees with chiral perturbation theory to within a statistical error of a few percent, thus providing the first numerical confirmation of the finite-size scaling forms to this order. The extrapolated ground state energy per spin, E=-0.669437(5), is the most accurate estimate reported to date. The most accurate Green's function Monte Carlo (GFMC) result is slightly higher than this value, most likely due to a small systematic error originating from ``population control'' bias in GFMC. The other extrapolated parameters are M=0.3070(3), rho_s = 0.175(2), chi_perp = 0.0625(9), and the spinwave velocity c=1.673(7). The statistical errors are comparable with those of the best previous estimates, obtained by fitting loop algorithm quantum Monte Carlo data to finite-temperature scaling forms. Both M and rho_s obtained from the finite-T data are, however, a few error bars higher than the present estimates. It is argued that the T=0 extrapolations performed here are less sensitive to effects of neglectedComment: 16 pages, RevTex, 9 PostScript figure
    corecore