10 research outputs found
Sources and Controls of Sulphur Export in Precambrian Shield Catchments in South-central Ontario
A series of studies was undertaken at Plastic Lake-1 (PC1) to determine the sources and controls on S cycling in small headwater catchments on the Precambrian Shield in south-central Ontario. Two observations were made about the S cycle in this region: (1) all streams exhibit highly coherent temporal patterns in SO4 concentrations and export, and (2) most catchments exported more SO4 in stream water than is received in bulk deposition during the past 2 decades. Synchronous temporal patterns in annual SO4 concentrations in both upland and wetland-draining streams were related to changes in climate, specifically those factors that determine catchment dryness. The number of days with no stream flow or stream flow below a critical threshold was a good predictor of the average stream SO4 concentration in a particular year. Sulphate chemistry in the PC1 outflow is highly dependent on processes occurring in a conifer Sphagnum swamp located immediately upstream of the chemical sampling station. Hydrologic inputs to the swamp during the summer determine whether S is retained or released from peat on an annual basis. Drying and re-wetting of Sphagnum-derived peat caused a substantial increase in soluble SO4 in laboratory experiments, which was slightly enhanced at higher temperature, but alternating moisture conditions had no immediate effect on Sphagnum. Despite large inter-annual changes in SO4 release, over the long-term (i. e. 20-years) SO4 inputs and exports from the swamp are in approximate balance. In contrast, the upland portion of PC1 (i. e. PC1-08) consistently exports more SO4 than is input in bulk deposition in every year of record. Even when inputs are increased to account for potential underestimates in dry deposition or weathering, the majority of catchments in this region exhibit net export in many years. Two internal sources are suggested to account for negative budgets: desorption and mineralization. Adsorption/desorption reactions respond directly to changes in SO4 input concentration, and lysimeter data indicate the importance of these processes for buffering short-term changes in SO4 concentration in LFH percolate. Desorption may be the primary direct response of upland soil to decreasing SO4 inputs in deposition and may substantially extend the period of net SO4 export in catchments that have large adsorbed SO4 pools such as PC1. However, the adsorbed pool may be sustained by continuous net release from mineralization, and should also be considered in budget calculations. Mineralization was shown to be responsive to drying and re-wetting events and temperature, although results varied among different materials. Sulphate release from mineral soil did not appear to be influenced by changing moisture, temperature or deposition chemistry in laboratory experiments, although adsorption/desorption reactions may have largely masked small changes in SO4 release via mineralization. The magnitude of organic S storage in mineral soil indicates that this pool could be an important source of export over the long-term. While it is unknown why (or if) mineralization is a net source of SO4 to drainage streams, changes in climate and/or deposition could potentially influence SO4 release from organic compounds. Soil moisture and temperature are important controls on microbial processes in soil, and changes in climate that bring about changes in soil moisture or temperature conditions could affect decomposition and mineralization processes. Similarly, historically high inputs of S and N in deposition may have brought about slow shifts in litter quality (i. e. decreased C:N, C:S) which could also potentially influence decomposition and mineralization rates. In order to predict the future response of surface water chemistry to changes in SO4 (and N) deposition, it is important to consider not only the magnitude of S pools in soil, but also the potential for SO4 cycling between pools. Likewise, models that predict changes in stream SO4 by adsorption isotherm data alone will underestimate the importance of desorption unless the potential for continual replenishment of the adsorbed pool through the relatively slower process of mineralization is also considered. In general, predictions of recovery from S deposition can only be made from a complete understanding of S pools, transformations, and the effects of climate, which are superimposed upon the long-term trend in deposition
The role of wetland coverage within the near-stream zone in predicting of seasonal stream export chemistry from forested headwater catchments
Postprint version. "This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record."Stream chemistry is often used to infer catchment‐scale biogeochemical processes. However, biogeochemical cycling in the near‐stream zone or hydrologically‐connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near‐stream wetland proportion is a better predictor of seasonal (winter, spring, summer and fall) stream chemistry compared with whole‐catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16‐year average seasonal flow‐weighted concentrations of both biogeochemically‐active nutrients, dissolved organic carbon (DOC), nitrate (NO3‐N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (< 200 ha) forested catchments in south‐central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO3‐N concentrations improved when only the proportion of wetland within the near‐stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydrologic connectivity of source areas to streams alters the role of the near‐stream zone environment, particularly during dry periods. The results also suggest that extent of riparian zone control may vary under changing patterns of hydrological connectivity. Predictions of biogeochemically‐active nutrients, particularly NO3‐N, can be improved by including near‐stream zone catchment morphology in landscape models.Funding for this project was provided by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to MCE.https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.1341
Spatial distribution and temporal variability in the forms of phosphorus in the Beaver River subwatershed of Lake Simcoe, Ontario, Canada
Agricultural runoff is an important source of phosphorus (P) to surface waters. This paper investigated the relationship between agricultural land use and the forms of P (i.e., total phosphorus [TP], total dissolved phosphorus [TDP], and soluble reactive phosphorus [SRP]) in streams draining 8 headwater subcatchments in the Beaver River subwatershed, a major inflow to Lake Simcoe, which is a large hard-water lake in south-central Canada. The time period of analysis had a strong influence on the results. There was no relationship between percent total agriculture and average TP when concentrations were averaged over the entire 12-month (Jun 2010–May 2011) monitoring period, whereas there were significant positive correlations between agricultural land use and average TP during the summer season (Jun–Aug). Significant correlations between average stream TDP and SRP and percent pastureland were observed, although relationships were again dependent on the time period of analysis. Concentrations of TP, TDP, and SRP were highly variable over time, with maximum concentrations occurring during the winter months. This was illustrated by a single rain-on-snow event (11 mm) on 5 March 2011, when samples taken 3–4 h apart varied by as much as 100%. These results indicate that winter storm-targeted sampling is likely necessary to capture the full range of annual variability in P forms and concentrations
The role of wetland coverage within the near-stream zone in predicting of seasonal stream export chemistry from forested headwater catchments
Stream chemistry is often used to infer catchment-scale biogeochemical processes. However, biogeochemical cycling in the near-stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near-stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole-catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16-year average seasonal flow-weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO
3
-N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south-central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO
3
-N concentrations improved when only the proportion of wetland within the near-stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydro
Can recovery from disturbance explain observed declines in total phosphorus in Precambrian Shield catchments?
The plausibility of land disturbance as a cause of declining P concentrations in oligotrophic lakes within south-central Ontario, Canada is evaluated using the process-based model INCA-P. The model was calibrated upon three catchments in the Muskoka-Haliburton region (MHR): Harp (HP), Dickie (DE) and Plastic (PC), which have varying degrees of declining P export, and different forms of historic disturbances (timber harvesting, tree-death, and soil acidification respectively). Hind-casts (1978-2007) were run with and without simulated disturbances. Model performance of both DE and HP was greatly improved when effects of wetland tree deaths (DE) and harvesting (HP) were included. In PC, with no record of timber harvesting and relatively minor declines in P, initial hind-casts successfully accounted for the majority of inter-annual P-fluxes; and performance was only marginally improved through the simulation of soil acidification. Vegetation decay, harvesting and catchment acidification accounted for 63%, 24% and 0.6% of P export over the past 30 years respectively. Of all disturbances, wetland vegetation death had the highest impact on areal P exports, indicating that riparian stability is particularly important.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Sulphate, nitrogen and base cation budgets at 21 forested catchments in Canada, the United States and Europe
To assess the concern over declining base cation levels in forest soils caused by acid deposition, input-output budgets (1990s average) for sulphate (SO4), inorganic nitrogen (NO3-N; NH4-N), calcium (Ca), magnesium (Mg) and potassium ( K) were synthesised for 21 forested catchments from 17 regions in Canada, the United States and Europe. Trend analysis was conducted on monthly ion concentrations in deposition and runoff when more than 9 years of data were available ( 14 regions, 17 sites). Annual average SO4 deposition during the 1990s ranged between 7.3 and 28.4 kg ha(-1) per year, and inorganic nitrogen (N) deposition was between 2.8 and 13.8 kg ha(-1) per year, of which 41-67% was nitrate (NO3-N). Over the period of record, SO4 concentration in deposition decreased in 13/14 ( 13 out of 14 total) regions and SO4 in runoff decreased at 14/17 catchments. In contrast, NO3-N concentrations in deposition decreased in only 1/14 regions, while NH4-N concentration patterns varied; increasing at 3/14 regions and decreasing at 2/14 regions. Nitrate concentrations in runoff decreased at 4/17 catchments and increased at only 1 site, whereas runoff levels of NH4-N increased at 5/17 catchments. Decreasing trends in deposition were also recorded for Ca, Mg, and K at many of the catchments and on an equivalent basis, accounted for up to 131% ( median 22%) of the decrease in acid anion deposition. Base cation concentrations in streams generally declined over time, with significant decreases in Ca, Mg and K occurring at 8, 9 and 7 of 17 sites respectively, which accounted for up to 133% ( median 48%) of the decrease in acid anion concentration. Sulphate export exceeded input at 18/21 catchments, likely due to dry deposition and/or internal sources. The majority of N in deposition ( 31-100%; median 94%) was retained in the catchments, although there was a tendency for greater NO3-N leaching at sites receiving higher (< 7 kg ha(-1) per year) bulk inorganic N deposition. Mass