27 research outputs found

    Parallel Rendering and Large Data Visualization

    Full text link
    We are living in the big data age: An ever increasing amount of data is being produced through data acquisition and computer simulations. While large scale analysis and simulations have received significant attention for cloud and high-performance computing, software to efficiently visualise large data sets is struggling to keep up. Visualization has proven to be an efficient tool for understanding data, in particular visual analysis is a powerful tool to gain intuitive insight into the spatial structure and relations of 3D data sets. Large-scale visualization setups are becoming ever more affordable, and high-resolution tiled display walls are in reach even for small institutions. Virtual reality has arrived in the consumer space, making it accessible to a large audience. This thesis addresses these developments by advancing the field of parallel rendering. We formalise the design of system software for large data visualization through parallel rendering, provide a reference implementation of a parallel rendering framework, introduce novel algorithms to accelerate the rendering of large amounts of data, and validate this research and development with new applications for large data visualization. Applications built using our framework enable domain scientists and large data engineers to better extract meaning from their data, making it feasible to explore more data and enabling the use of high-fidelity visualization installations to see more detail of the data.Comment: PhD thesi

    From Big Data to Big Displays: High-Performance Visualization at Blue Brain

    Full text link
    Blue Brain has pushed high-performance visualization (HPV) to complement its HPC strategy since its inception in 2007. In 2011, this strategy has been accelerated to develop innovative visualization solutions through increased funding and strategic partnerships with other research institutions. We present the key elements of this HPV ecosystem, which integrates C++ visualization applications with novel collaborative display systems. We motivate how our strategy of transforming visualization engines into services enables a variety of use cases, not only for the integration with high-fidelity displays, but also to build service oriented architectures, to link into web applications and to provide remote services to Python applications.Comment: ISC 2017 Visualization at Scale worksho

    Physically-based in silico light sheet microscopy for visualizing fluorescent brain models

    Get PDF
    We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen

    A Process for Digitizing and Simulating Biologically Realistic Oligocellular Networks Demonstrated for the Neuro-Glio-Vascular Ensemble

    Get PDF
    One will not understand the brain without an integrated exploration of structure and function, these attributes being two sides of the same coin: together they form the currency of biological computation. Accordingly, biologically realistic models require the re-creation of the architecture of the cellular components in which biochemical reactions are contained. We describe here a process of reconstructing a functional oligocellular assembly that is responsible for energy supply management in the brain and creating a computational model of the associated biochemical and biophysical processes. The reactions that underwrite thought are both constrained by and take advantage of brain morphologies pertaining to neurons, astrocytes and the blood vessels that deliver oxygen, glucose and other nutrients. Each component of this neuro-glio-vasculature ensemble (NGV) carries-out delegated tasks, as the dynamics of this system provide for each cell-type its own energy requirements while including mechanisms that allow cooperative energy transfers. Our process for recreating the ultrastructure of cellular components and modeling the reactions that describe energy flow uses an amalgam of state-of the-art techniques, including digital reconstructions of electron micrographs, advanced data analysis tools, computational simulations and in silico visualization software. While we demonstrate this process with the NGV, it is equally well adapted to any cellular system for integrating multimodal cellular data in a coherent framework

    Reconstruction and simulation of neocortical microcircuitry

    Get PDF
    We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm3 containing ∼31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ∼8 million connections with ∼37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies

    Parallel rendering and large data visualization

    Full text link

    Equalizer 2.0 - Convergence of a Parallel Rendering Framework

    Full text link
    Developing complex, real world graphics applications which leverage multiple GPUs and computers for interactive 3D rendering tasks is a complex task. It requires expertise in distributed systems and parallel rendering in addition to the application domain itself. We present a mature parallel rendering framework which provides a large set of features, algorithms and system integration for a wide range of real-world research and industry applications. Using the Equalizer parallel rendering framework, we show how a wide set of generic algorithms can be integrated in the framework to help application scalability and development in many different domains, highlighting how concrete applications benefit from the diverse aspects and use cases of Equalizer. We present novel parallel rendering algorithms, powerful abstractions for large visualization setups and virtual reality, as well as new experimental results for parallel rendering and data distribution

    ABSTRACT The Equalizer Parallel Rendering Framework

    No full text
    Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering solutions are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the architecture of Equalizer, discuss its advantadges over previous approaches, present example configurations and usage scenarios as well as some scalability results
    corecore