15 research outputs found

    Virus-like particle vaccines against BK and JC polyomaviruses

    Get PDF
    Nearly all healthy adults are asymptomatically infected with human polyomaviruses. In immunosuppressed individuals, the infection can reactivate and cause disease. BK polyomavirus (BKV) frequently damages transplanted kidneys and causes severe bladder disease in bone marrow transplant patients. JC polyomavirus (JCV) causes a lethal brain disease, PML, in individuals on various immunosuppressive therapies. PML also affects immunodeficient individuals, including AIDS patients. The outer capsid proteins of polyomaviruses are structurally similar to the capsids of human papillomaviruses (HPVs). Building on the success of the NCI’s HPV virus-like particle (VLP) vaccine technologies, we have developed VLP vaccines targeting BKV and JCV. Preclinical testing in a monkey model indicates that the BKV and JCV VLP vaccines share the HPV vaccines’ exceptionally potent immunogenicity. Given our knowledge of the role that antibodies play in ameliorating polyomavirus pathologies, the new VLP vaccines are likely to protect at-risk patients against the development of BKV-induced urinary tract disease and JCV-induced brain disease. Each year, roughly 30,000 Americans join wait-lists for kidney transplantation. Additionally, roughly 300,000 Americans per year are diagnosed with diseases that might be treated with bone marrow transplantation. Emerging evidence indicates that antibody-producing plasma cells elicited by the BKV vaccine will persist after bone marrow transplantation and the vaccine should thus provide protection against post-transplant hemorrhagic cystitis. The highly effective multiple sclerosis therapy Tysabri (natalizumab) is associated with up to 2% risk of PML side effects. Rituxan (rituximab), which is used for treatment of rheumatoid arthritis and certain types of lymphoma, carries a black box warning for PML and a dozen additional immunosuppressive therapies are also known or suspected to have PML side effects. The JCV vaccine should be a useful preventive adjunct for these popular immunotherapies. Since there are currently no effective treatments for BKV or JCV diseases, the candidate vaccines seem likely to qualify for FDA’s Accelerated Approval Program. The NCI is currently seeking industry partners

    Surface (S) Layer Proteins of Lactobacillus acidophilus Block Virus Infection via DC-SIGN Interaction

    Get PDF
    Alphaviruses and flaviviruses are important human pathogens that include Chikungunya virus (CHIKV), Dengue virus (DENV), and Zika virus (ZIKV), which can cause diseases in humans ranging from arthralgia to hemorrhagic fevers and microcephaly. It was previously shown that treatment with surface layer (S-layer) protein, present on the bacterial cell-envelope of Lactobacillus acidophilus, is able to inhibit viral and bacterial infections by blocking the pathogen’s interaction with DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN), a trans-membrane protein that is a C-type calcium-dependent lectin. DC-SIGN is known to act as an attachment factor for several viruses including alphaviruses and flaviviruses. In the present study, we used alphaviruses as a model system to dissect the mechanism of S-layer inhibition. We first evaluated the protective effect of S-layer using 3T3 cells, either wild type or stably expressing DC-SIGN, and infecting with the alphaviruses Semliki Forest virus (SFV) and CHIKV and the flaviviruses ZIKV and DENV. DC-SIGN expression significantly enhanced infection by all four viruses. Treatment of the cells with S-layer prior to infection decreased infectivity of all viruses only in cells expressing DC-SIGN. In vitro ELISA experiments showed a direct interaction between S-layer and DC-SIGN; however, confocal microscopy and flow cytometry demonstrated that S-layer binding to the cells was independent of DC-SIGN expression. S-layer protein prevented SFV binding and internalization in DC-SIGN-expressing cells but had no effect on virus binding to DC-SIGN-negative cells. Inhibition of virus binding occurred in a time-dependent manner, with a significant reduction of infection requiring at least a 30-min pre-incubation of S-layer with DC-SIGN-expressing cells. These results suggest that S-layer has a different mechanism of action compared to mannan, a common DC-SIGN-binding compound that has an immediate effect in blocking viral infection. This difference could reflect slower kinetics of S-layer binding to the DC-SIGN present at the plasma membrane (PM). Alternatively, the S-layer/DC-SIGN interaction may trigger the activation of signaling pathways that are required for the inhibition of viral infection. Together our results add important information relevant to the potential use of L. acidophilus S-layer protein as an antiviral therapy

    Identification of a Second Raccoon-Associated Polyomavirus

    No full text

    Identification of a Second Raccoon-Associated Polyomavirus

    No full text
    Raccoon polyomavirus 1 (RacPyV1) is the suspected cause of an outbreak of fatal brain tumors among raccoons (Procyon lotor) in the western United States. Spleen samples from Georgia raccoons were screened for polyomaviruses. Although RacPyV1 was not detected, a previously unknown polyomavirus, which we designate RacPyV2, was identified and sequenced

    Infectious Entry and Neutralization of Pathogenic JC Polyomaviruses

    No full text
    Summary: Progressive multifocal leukoencephalopathy (PML) is a lethal brain disease caused by uncontrolled replication of JC polyomavirus (JCV). JCV strains recovered from the brains of PML patients carry mutations that prevent the engagement of sialylated glycans, which are thought to serve as receptors for the infectious entry of wild-type JCV. In this report, we show that non-sialylated glycosaminoglycans (GAGs) can serve as alternative attachment receptors for the infectious entry of both wild-type and PML mutant JCV strains. After GAG-mediated attachment, PML mutant strains engage non-sialylated non-GAG co-receptor glycans, such as asialo-GM1. JCV-neutralizing monoclonal antibodies isolated from patients who recovered from PML appear to block infection by preventing the docking of post-attachment co-receptor glycans in an apical pocket of the JCV major capsid protein. Identification of the GAG-dependent/sialylated glycan-independent alternative entry pathway should facilitate the development of infection inhibitors, including recombinant neutralizing antibodies. : Geoghegan et al. show that JC polyomavirus strains that cause brain disease infect cells via a pathway involving a heparin-like attachment receptor and a non-sialylated co-receptor. Candidate therapeutic human monoclonal antibodies neutralize by blocking co-receptor engagement. Keywords: polyomavirus, JC, BK, SV40, progressive multifocal leukoencephalopathy, PML, monoclonal antibody, mAb, virus entry, recepto

    Characterization of BK Polyomaviruses from Kidney Transplant Recipients Suggests a Role for APOBEC3 in Driving In-Host Virus Evolution

    No full text
    BK polyomavirus (BKV) frequently causes nephropathy (BKVN) in kidney transplant recipients (KTRs). BKV has also been implicated in the etiology of bladder and kidney cancers. We characterized BKV variants from two KTRs who developed BKVN followed by renal carcinoma. Both patients showed a swarm of BKV sequence variants encoding non-silent mutations in surface loops of the viral major capsid protein. The temporal appearance and disappearance of these mutations highlights the intra-patient evolution of BKV. Some of the observed mutations conferred resistance to antibody-mediated neutralization. The mutations also modified the spectrum of receptor glycans engaged by BKV during host cell entry. Intriguingly, all observed mutations were consistent with DNA damage caused by antiviral APOBEC3 cytosine deaminases. Moreover, APOBEC3 expression was evident upon immunohistochemical analysis of renal biopsies from KTRs. These results provide a snapshot of in-host BKV evolution and suggest that APOBEC3 may drive BKV mutagenesis in\ua0vivo

    Midpoint-rooted phylogenetic tree for polyomavirus VP1 protein sequences.

    No full text
    <p>Species with different clade affiliations in LT analyses (<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005574#ppat.1005574.g003" target="_blank">Fig 3</a>) are indicated in colored bold oblique text. The script Ć’ character indicates fragmentary (sub-genomic) sequences. Percent bootstrap values for selected nodes are indicated. A FigTree file containing detailed bootstrap values is provided as <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005574#ppat.1005574.s008" target="_blank">S3 File</a>. Scale bar shows one substitution per site.</p
    corecore