862 research outputs found

    Time Evolution and the Nature of the Near-Infrared Jets in GRS1915+105

    Get PDF
    We observed the galactic microquasar GRS1915+105 in the K (2.2μ2.2 \mum) band on October 16 and 17, 1995 UTC using the COB infrared (IR) imager on the Kitt Peak National Observatory 2.1-m telescope with a 0.2-arcsec/pixel plate scale and under good (0.7\sim 0.7-arcsec) seeing conditions. Using a neighboring star in the image frames to determine the point spread function (PSF), we PSF-subtract the images of GRS1915+105. We find no evidence of extended emission such as the apparent near-IR jets seen by Sams et al. (1996) in July, 1995. Simple modelling of the star + jet structure allows us to place an upper limit on any similar emission at that position of K>16.4K>16.4 at the 95% confidence level, as compared to K=13.9K=13.9 as seen by Sams et al. (1996). This lack of extended IR flux during continued hard X-ray flaring activity confirms the hypothesis that the extended IR emission arises from the superluminal radio-emitting jets rather than reprocessing of the X-ray emission on other structures around the compact central object. Given the large apparent velocity of the radio-emitting jets, by the time of our observations the Sams et al. feature would have moved >1>1 arcsec from GRS1915+105, and we can place a limit of K>17.7K>17.7 (95% confidence level) on any infrared emission in this region. We can thus place an upper limit on the radiative timescale of the feature of τ<25\tau < 25 days, which is consistent with synchrotron jet emission.Comment: 10 pages, 3 figures; submitted to ApJ Letter

    A Comparison Between Lucky Imaging and Speckle Stabilization for Astronomical Imaging

    Full text link
    The new technique of Speckle Stabilization has great potential to provide optical imaging data at the highest angular resolutions from the ground. While Speckle Stabilization was initially conceived for integral field spectroscopic analyses, the technique shares many similarities with speckle imaging (specifically shift-and-add and Lucky Imaging). Therefore, it is worth comparing the two for imaging applications. We have modeled observations on a 2.5-meter class telescope to assess the strengths and weaknesses of the two techniques. While the differences are relatively minor, we find that Speckle Stabilization is a viable competitor to current Lucky Imaging systems. Specifically, we find that Speckle Stabilization is 3.35 times more efficient (where efficiency is defined as signal-to-noise per observing interval) than shift-and-add and able to detect targets 1.42 magnitudes fainter when using a standard system. If we employ a high-speed shutter to compare to Lucky Imaging at 1% image selection, Speckle Stabilization is 1.28 times more efficient and 0.31 magnitudes more sensitive. However, when we incorporate potential modifications to Lucky Imaging systems we find the advantages are significantly mitigated and even reversed in the 1% frame selection cases. In particular, we find that in the limiting case of Optimal Lucky Imaging, that is zero read noise {\it and} photon counting, we find Lucky Imaging is 1.80 times more efficient and 0.96 magnitudes more sensitive than Speckle Stabilization. For the cases in between, we find there is a gradation in advantages to the different techniques depending on target magnitude, fraction of frames used and system modifications.Comment: 21 page, 6 figures. Accepted for publication in PAS

    A Next Generation High-speed Data Acquisition System for Multi-channel Infrared and Optical Photometry

    Get PDF
    We report the design, operation, and performance of a next generation high-speed data acquisition system for multi-channel infrared and optical photometry based on the modern technologies of Field Programmable Gate Arrays, the Peripheral Component Interconnect bus, and the Global Positioning System. This system allows either direct recording of photon arrival times or binned photon counting with time resolution up to 1-μ\mus precision in Universal Time, as well as real-time data monitoring and analysis. The system also allows simultaneous recording of multi-channel observations with very flexible, reconfigurable observational modes. We present successful 20-μ\mus resolution simultaneous observations of the Crab Nebula Pulsar in the infrared (H-band) and optical (V-band) wavebands obtained with this system and 100-μ\mus resolution V-band observations of the dwarf nova IY Uma with the 5-m Hale telescope at the Palomar Observatory.Comment: 11 pages, including 4 figures, to appear in PAS

    Probing the Super Star Cluster Environment of NGC 1569 Using FISICA

    Full text link
    We present near-IR JH spectra of the central regions of the dwarf starburst galaxy NGC 1569 using the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA). The dust-penetrating properties and available spectral features of the near-IR, combined with the integral field unit (IFU) capability to take spectra of a field, make FISICA an ideal tool for this work. We use the prominent [He I] (1.083\mu m) and Pa\beta (1.282 \mu m) lines to probe the dense star forming regions as well as characterize the general star forming environment around the super star clusters (SSCs) in NGC 1569. We find [He I] coincident with CO clouds to the north and west of the SSCs, which provides the first, conclusive evidence for embedded star clusters here.Comment: 6 pages, 3 figures, accepted for publication in the MNRA

    Infrared to Ultraviolet Wavelength-Dependent Variations Within the Pulse Profile Peaks of the Crab Nebula Pulsar

    Get PDF
    We present evidence of wavelength-dependent variations within the infrared, optical, and ultraviolet pulse profile peaks of the Crab Nebula pulsar. The leading and trailing edge half-width half-maxima of the peaks display clear differences in their wavelength dependences. In addition, phase-resolved infrared-to-ultraviolet color spectra show significant variations from the leading to trailing edges of the peaks. The color variations between the leading and trailing edges remain significant over phase differences smaller than 0.0054, corresponding to timescales of <180μ<180 \mus. These results are not predicted by any current models of the pulsar emission mechanism and offer new challenges for the development of such models.Comment: 12 pages, 4 figure
    corecore