15 research outputs found

    Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals

    Get PDF
    Introduction Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. Methods We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touchscreen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touchscreen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman\u27s rank correlations. Results Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. Conclusions We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress

    Coupled-Wave Theory for Square-Lattice Photonic Crystal Lasers With TE Polarization

    Get PDF
    We present a coupled-wave analysis for square-lattice photonic crystal lasers with transverse electric polarization. A model consisting of eight plane waves coupled by Bragg diffraction is used to describe two-dimensional optical coupling. The resonant frequencies and threshold criteria for the modes of oscillation have been determined for the case of index periodicity with a lattice of circular holes. The spatial intensity distributions of these resonant modes have also been calculated. For the fundamental modes, we have investigated how the intensity distribution varies as a function of coupling strength. The dependence of the threshold gain of these modes on hole size has also been elucidated. This semianalytical approach provides a comprehensive understanding of square-lattice photonic crystal lasers and allows more effective optimization of their cavity design
    corecore