2,340 research outputs found
The not so 'borderless' internet:Does it still give rise to private international law issues?
Conditional Hardness of Earth Mover Distance
The Earth Mover Distance (EMD) between two sets of points A, B subseteq R^d with |A| = |B| is the minimum total Euclidean distance of any perfect matching between A and B. One of its generalizations is asymmetric EMD, which is the minimum total Euclidean distance of any matching of size |A| between sets of points A,B subseteq R^d with |A| <= |B|. The problems of computing EMD and asymmetric EMD are well-studied and have many applications in computer science, some of which also ask for the EMD-optimal matching itself. Unfortunately, all known algorithms require at least quadratic time to compute EMD exactly. Approximation algorithms with nearly linear time complexity in n are known (even for finding approximately optimal matchings), but suffer from exponential dependence on the dimension.
In this paper we show that significant improvements in exact and approximate algorithms for EMD would contradict conjectures in fine-grained complexity. In particular, we prove the following results:
- Under the Orthogonal Vectors Conjecture, there is some c>0 such that EMD in Omega(c^{log^* n}) dimensions cannot be computed in truly subquadratic time.
- Under the Hitting Set Conjecture, for every delta>0, no truly subquadratic time algorithm can find a (1 + 1/n^delta)-approximate EMD matching in omega(log n) dimensions.
- Under the Hitting Set Conjecture, for every eta = 1/omega(log n), no truly subquadratic time algorithm can find a (1 + eta)-approximate asymmetric EMD matching in omega(log n) dimensions
ULearn: personalized medical learning on the web for patient empowerment
Health literacy constitutes an important step towards patient empowerment and the Web is presently the biggest repository of medical information and, thus, the biggest medical resource to be used in the learning process. However, at present, web medical information is mainly accessed through generic search engines that do not take into account the user specific needs and starting knowledge and so they are not able to support learning activities tailored to the specific user requirements. This work presents “ULearn” a meta engine that supports access, understanding and learning on the Web in the medical domain based on specific user requirements and knowledge levels towards what we call “balanced learning”. Balanced learning allows users to perform learning activities based on specific user requirements (understanding, deepening, widening and exploring) towards his/her empowerment. We have designed and developed ULearn to suggest search keywords correlated to the different user requirements and we have carried out some preliminary experiments to evaluate the effectiveness of the provided information
Optical properties of MgZnO alloys: Excitons and exciton-phonon complexes
The characteristics of the excitonic absorption and emission around the fundamental bandgap of wurtzite Mg(x)Zn(1-x)O grown on c-plane sapphire substrates by plasma assisted molecular beam epitaxy with Mg contents between x = 0 and x = 0.23 are studied using spectroscopic ellipsometry and photoluminescence (PL) measurements. The ellipsometric data were analyzed using a multilayer model yielding the dielectric function (DF). The imaginary part of the DF for the alloys exhibits a pronounced feature which is attributed to exciton-phonon coupling (EPC) similar to the previously reported results for ZnO. Thus, in order to determine reliable transition energies, the spectral dependence is analyzed by a model which includes free excitonic lines, the exciton continuum, and the enhanced absorption due to EPC. A line shape analysis of the temperature-dependent PL spectra yielded in particular the emission-related free excitonic transition energies, which are compared to the results from the DF line-shape analysis. The PL linewidth is discussed within the framework of an alloy disorder model
Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?
Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel
Screening of the quantum-confined Stark effect in AlN/GaN nanowire superlattices by Germanium doping
We report on electrostatic screening of polarization-induced internal
electric fields in AlN/GaN nanowire heterostructures with Germanium-doped GaN
nanodiscs embedded between AlN barriers. The incorporation of Germanium at
concentrations above shifts the photoluminescence
emission energy of GaN nanodiscs to higher energies accompanied by a decrease
of the photoluminescence decay time. At the same time, the thickness-dependent
shift in emission energy is significantly reduced. In spite of the high donor
concentration a degradation of the photoluminescence properties is not
observed.Comment: Manuscript including Supplemental material (15 pages, 5 figures
Exploring the Partonic Structure of Hadrons through the Drell-Yan Process
The Drell-Yan process is a standard tool for probing the partonic structure
of hadrons. Since the process proceeds through a quark-antiquark annihilation,
Drell-Yan scattering possesses a unique ability to selectively probe sea
distributions. This review examines the application of Drell-Yan scattering to
elucidating the flavor asymmetry of the nucleon's sea and nuclear modifications
to the sea quark distributions in unpolarized scattering. Polarized beams and
targets add an exciting new dimension to Drell-Yan scattering. In particular,
the two initial-state hadrons give Drell-Yan sensitivity to chirally-odd
transversity distributions.Comment: 23 pages, 9 figures, to appear in J. Phys. G, resubmission corrects
typographical error
Self-assembly of ordered wurtzite/rock salt heterostructures—A new view on phase separation in MgxZn1−xO
The self-assembled formation of ordered, vertically stacked rocksalt/wurtzite Mg x Zn 1−xO heterostructures by planar phase separation is shown. These heterostructures form quasi “natural” two-dimensional hetero-interfaces between the different phases upon annealing of MgO-oversaturated wurtzite Mg x Zn 1−xO layers grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. The optical absorption spectra show a red shift simultaneous with the appearance of a cubic phase upon annealing at temperatures between 900 °C and 1000 °C. Transmission electron microscopy reveals that these effects are caused by phase separation leading to the formation of a vertically ordered rock salt/wurtzite heterostructures. To explain these observations, we suggest a phase separation epitaxy model that considers this process being initiated by the formation of a cubic (Mg,Zn)Al2O4 spinel layer at the interface to the sapphire substrate, acting as a planar seed for the epitaxial precipitation of rock salt Mg x Zn 1−xO. The equilibrium fraction x of magnesium in the resulting wurtzite (rock salt) layers is approximately 0.15 (0.85), independent of the MgO content of the as-grown layer and determined by the annealing temperature. This model is confirmed by photoluminescence analysis of the resulting layer systems after different annealing temperatures. In addition, we show that the thermal annealing process results in a significant reduction in the density of edge- and screw-type dislocations, providing the possibility to fabricate high quality templates for quasi-homoepitaxial growth
Generalized linear latent variable modeling analysis for multi-group studies
Latent variable modeling is commonly used in the behavioral, medical and social sciences. The models used in such analysis relate all observed variables to latent common factors. In many applications, the observed variables are in polytomous form. The existing procedures for models with polytomous outcomes can be considered lacking in several aspects, especially for multi-sample situations. We incorporate a new generalized linear latent variable modeling approach for developing statistically sound procedures that furnish meaningful interpretation and can incorporate many types of outcome variables. In the special case of polytomous outcomes, we also propose a model that incorporates response errors. A rather simple model parameterization used in our approach is appropriate for multi-sample analysis and leads to practically useful inference procedures. A Monte Carlo EM algorithm is developed for computing the full maximum likelihood estimates. Simulation studies are presented to validate the benefits of the new approach and to compare its performance to other methods. The new approach is also applied to analyze data from two substance abuse prevention studies
- …
