399 research outputs found

    Necroptosis, pyroptosis and apoptosis: an intricate game of cell death

    Get PDF
    Cell death is a fundamental physiological process in all living organisms. Its roles extend from embryonic development, organ maintenance, and aging to the coordination of immune responses and autoimmunity. In recent years, our understanding of the mechanisms orchestrating cellular death and its consequences on immunity and homeostasis has increased substantially. Different modalities of what has become known as \u27programmed cell death\u27 have been described, and some key players in these processes have been identified. We have learned more about the intricacies that fine tune the activity of common players and ultimately shape the different types of cell death. These studies have highlighted the complex mechanisms tipping the balance between different cell fates. Here, we summarize the latest discoveries in the three most well understood modalities of cell death, namely, apoptosis, necroptosis, and pyroptosis, highlighting common and unique pathways and their effect on the surrounding cells and the organism as a whole

    Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation

    Get PDF
    Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1beta and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K (+) efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca (2+) fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation

    Higher Order Effects in the Dielectric Constant of Percolative Metal-Insulator Systems above the Critical Point

    Full text link
    The dielectric constant of a conductor-insulator mixture shows a pronounced maximum above the critical volume concentration. Further experimental evidence is presented as well as a theoretical consideration based on a phenomenological equation. Explicit expressions are given for the position of the maximum in terms of scaling parameters and the (complex) conductances of the conductor and insulator. In order to fit some of the data, a volume fraction dependent expression for the conductivity of the more highly conductive component is introduced.Comment: 4 pages, Latex, 4 postscript (*.epsi) files submitted to Phys Rev.

    Kinematically complete experimental study of Compton scattering at helium atoms near the ionization threshold

    Full text link
    Compton scattering is one of the fundamental interaction processes of light with matter. Already upon its discovery [1] it was described as a billiard-type collision of a photon kicking a quasi-free electron. With decreasing photon energy, the maximum possible momentum transfer becomes so small that the corresponding energy falls below the binding energy of the electron. Then ionization by Compton scattering becomes an intriguing quantum phenomenon. Here we report a kinematically complete experiment on Compton scattering at helium atoms below that threshold. We determine the momentum correlations of the electron, the recoiling ion, and the scattered photon in a coincidence experiment finding that electrons are not only emitted in the direction of the momentum transfer, but that there is a second peak of ejection to the backward direction. This finding links Compton scattering to processes as ionization by ultrashort optical pulses [2], electron impact ionization [3,4], ion impact ionization [5,6], and neutron scattering [7] where similar momentum patterns occur.Comment: 7 pages, 4 figure

    Charcot-Leyden Crystals activate the NLRP3 inflammasome and cause IL-1β inflammation [preprint]

    Get PDF
    Charcot-Leyden crystals (CLCs) are Galectin-10 protein crystals that can form after eosinophils degranule. CLCs can appear and persist in tissues from patients with eosinophilic disorders, such as asthma, allergic reactions, fungal, and helminthic infections. Despite abundant reports of their occurrence in human disease, the inflammatory potential of CLCs has remained unknown. Here we show that CLCs induce IL-1β release upon their uptake by primary human macrophages in vitro, and that they induce inflammation in vivo in mouse models of acute peritonitis and bronchitis. CLC-induced IL-1β was dependent on NLRP3 and caspase-1, and their instillation in inflammasome reporter mice promoted the assembly of ASC complexes and IL-1β secretion in the lungs. Our findings reveal that CLCs are recognized by the NLRP3 inflammasome, which may sustain inflammation that follows eosinophilic inflammatory processes

    Current Distribution in the Three-Dimensional Random Resistor Network at the Percolation Threshold

    Full text link
    We study the multifractal properties of the current distribution of the three-dimensional random resistor network at the percolation threshold. For lattices ranging in size from 838^3 to 80380^3 we measure the second, fourth and sixth moments of the current distribution, finding {\it e.g.\/} that t/ν=2.282(5)t/\nu=2.282(5) where tt is the conductivity exponent and ν\nu is the correlation length exponent.Comment: 10 pages, latex, 8 figures in separate uuencoded fil

    PD-L1 is expressed on human platelets and is affected by immune checkpoint therapy

    Get PDF
    Cancer immunotherapy has been revolutionised by drugs that enhance the ability of the immune system to detect and fight tumors. Immune checkpoint therapies that target the programmed death-1 receptor (PD-1), or its ligand (PD-L1) have shown unprecedented rates of durable clinical responses in patients with various cancer types. However, there is still a large fraction of patients that do not respond to checkpoint inhibitors, and the challenge remains to find cellular and molecular cues that could predict which patients would benefit from these therapies. Using a series of qualitative and quantitative methods we show here that PBMCs and platelets from smokers and patients with head and neck squamous cell carcinoma (HNSCC) or lung cancer express and up-regulate PD-L1 independently of tumor stage. Furthermore, treatment with Atezolizumab, a fully humanised monoclonal antibody against PD-L1, in 4 patients with lung cancer caused a decrease in PD-L1 expression in platelets, which was restored over 20 days. Altogether, our findings reveal the expression of the main therapeutic target in current checkpoint therapies in human platelets and highlight their potential as biomarkers to predict successful therapeutic outcomes

    PD-L1 is expressed on human platelets and is affected by immune checkpoint therapy

    Get PDF
    Cancer immunotherapy has been revolutionised by drugs that enhance the ability of the immune system to detect and fight tumors. Immune checkpoint therapies that target the programmed death-1 receptor (PD-1), or its ligand (PD-L1) have shown unprecedented rates of durable clinical responses in patients with various cancer types. However, there is still a large fraction of patients that do not respond to checkpoint inhibitors, and the challenge remains to find cellular and molecular cues that could predict which patients would benefit from these therapies. Using a series of qualitative and quantitative methods we show here that PBMCs and platelets from smokers and patients with head and neck squamous cell carcinoma (HNSCC) or lung cancer express and up-regulate PD-L1 independently of tumor stage. Furthermore, treatment with Atezolizumab, a fully humanised monoclonal antibody against PD-L1, in 4 patients with lung cancer caused a decrease in PD-L1 expression in platelets, which was restored over 20 days. Altogether, our findings reveal the expression of the main therapeutic target in current checkpoint therapies in human platelets and highlight their potential as biomarkers to predict successful therapeutic outcomes

    Anakinra reduces blood pressure and renal fibrosis in one kidney/DOCA/salt-induced hypertension

    Get PDF
    OBJECTIVE: To determine whether a clinically-utilised IL-1 receptor antagonist, anakinra, reduces renal inflammation, structural damage and blood pressure (BP) in mice with established hypertension. METHODS: Hypertension was induced in male mice by uninephrectomy, deoxycorticosterone acetate (2.4mg/d,s.c.) and replacement of drinking water with saline (1K/DOCA/salt). Control mice received uninephrectomy, a placebo pellet and normal drinking water. 10days post-surgery, mice commenced treatment with anakinra (75mg/kg/d, i.p.) or vehicle (0.9% saline, i.p.) for 11 days. Systolic BP was measured by tail cuff while qPCR, immunohistochemistry and flow cytometry were used to measure inflammatory markers, collagen and immune cell infiltration in the kidneys. RESULTS: By 10 days post-surgery, 1K/DOCA/salt-treated mice displayed elevated systolic BP (148.3+/-2.4mmHg) compared to control mice (121.7+/-2.7mmHg; n=18, P\u3c0.0001). The intervention with anakinra reduced BP in 1K/DOCA/salt-treated mice by approximately 20mmHg (n=16, P\u3c0.05), but had no effect in controls. In 1K/DOCA/salt-treated mice, anakinra modestly reduced ( approximately 30%) renal expression of some (CCL5, CCL2; n=7-8; P\u3c0.05) but not all (ICAM-1, IL-6) inflammatory markers, and had no effect on immune cell infiltration (n=7-8, P \u3e 0.05). Anakinra reduced renal collagen content (n=6, P\u3c0.01) but paradoxically appeared to exacerbate the renal and glomerular hypertrophy (n=8-9, P\u3c0.001) that accompanied 1K/DOCA/salt-induced hypertension. CONCLUSION: Despite its anti-hypertensive and renal anti-fibrotic actions, anakinra had minimal effects on inflammation and leukocyte infiltration in mice with 1K/DOCA/salt-induced hypertension. Future studies will assess whether the anti-hypertensive actions of anakinra are mediated by protective actions in other BP-regulating or salt-handling organs such as the arteries, skin and brain
    • …
    corecore