
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Open Access Publications by UMMS Authors 

2021-05-01 

Necroptosis, pyroptosis and apoptosis: an intricate game of cell Necroptosis, pyroptosis and apoptosis: an intricate game of cell 

death death 

Damien Bertheloot 
University of Bonn 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs 

 Part of the Cell and Developmental Biology Commons, Cells Commons, and the Cellular and Molecular 

Physiology Commons 

Repository Citation Repository Citation 
Bertheloot D, Latz E, Franklin BS. (2021). Necroptosis, pyroptosis and apoptosis: an intricate game of cell 
death. Open Access Publications by UMMS Authors. https://doi.org/10.1038/s41423-020-00630-3. 
Retrieved from https://escholarship.umassmed.edu/oapubs/4627 

Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access 
Publications by UMMS Authors by an authorized administrator of eScholarship@UMMS. For more information, 
please contact Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/oapubs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/oapubs?utm_source=escholarship.umassmed.edu%2Foapubs%2F4627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/8?utm_source=escholarship.umassmed.edu%2Foapubs%2F4627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/940?utm_source=escholarship.umassmed.edu%2Foapubs%2F4627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/70?utm_source=escholarship.umassmed.edu%2Foapubs%2F4627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/70?utm_source=escholarship.umassmed.edu%2Foapubs%2F4627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1038/s41423-020-00630-3
https://escholarship.umassmed.edu/oapubs/4627?utm_source=escholarship.umassmed.edu%2Foapubs%2F4627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Lisa.Palmer@umassmed.edu


REVIEW ARTICLE OPEN

Necroptosis, pyroptosis and apoptosis: an intricate game of
cell death
Damien Bertheloot1, Eicke Latz 1,2,3 and Bernardo S. Franklin 1

Cell death is a fundamental physiological process in all living organisms. Its roles extend from embryonic development, organ
maintenance, and aging to the coordination of immune responses and autoimmunity. In recent years, our understanding of the
mechanisms orchestrating cellular death and its consequences on immunity and homeostasis has increased substantially. Different
modalities of what has become known as ‘programmed cell death’ have been described, and some key players in these processes
have been identified. We have learned more about the intricacies that fine tune the activity of common players and ultimately
shape the different types of cell death. These studies have highlighted the complex mechanisms tipping the balance between
different cell fates. Here, we summarize the latest discoveries in the three most well understood modalities of cell death, namely,
apoptosis, necroptosis, and pyroptosis, highlighting common and unique pathways and their effect on the surrounding cells and
the organism as a whole.
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INTRODUCTION
Cell death has physiological and pathological functions. The
cellular lifespan can range from a few days to many years,
depending on the cell type. Many physiological processes require
cell death for their function (e.g., embryonal development and
immune selection of B and T cells). Hence, each day, billions of
cells die and are quickly removed by phagocytes. This mechanism
of dead cell removal/clearance operates smoothly under normal
conditions, demonstrating the efficacy of phagocytic processes.
However, this system can be overwhelmed when large numbers
of cells die abruptly and accumulate, such as during infection,
chronic inflammation, and tissue damage. Sudden and unrest-
rained cell death results in massive release of cellular contents into
the extracellular space. Released molecules act as damage signals,
known as danger-associated molecular patterns (DAMPs). The
presence of DAMPs in the extracellular space elicits a robust
immune response that recruits additional phagocytes and other
immune cells to clear the threat and promote tissue repair. During
infections, the presence of pathogen-associated molecular pat-
terns (PAMPs) elicits specific antimicrobial immune responses to
control the infection. In certain circumstances, cells can regulate
(or “program”) their death to tailor immune responses, thereby
changing the impact their death will have on the surroundings.
The best-studied forms of programmed cell death are apoptosis,
necroptosis, and pyroptosis. Additional types of programmed cell
death that occur in particular cell toxicity states often induced by
pharmacological treatments (e.g., anticancer therapies) have been
reported.1 Whether these less-studied pathways have physiologi-
cal functions and how they diverge from other better understood
pathways requires further investigation. Of note, a nomenclature

to distinguish the many and often intercrossed cell death
pathways has been proposed.2 A dichotomy has long dominated
the general understanding of how dying cells affect their
surroundings: necrosis, regarded as a passive and highly
inflammatory form of cell death, and apoptosis, considered to
be highly coordinated and immunologically inert (or “silent”).
While necroptosis and pyroptosis act as “whistle blowers”,
resulting in the release of alarmins and other proinflammatory
signals into the cellular surroundings, apoptosis is considered
“silent” and dampens subsequent immune responses.
Although this simplistic view has blurred the intricate mechan-

isms separating these forms of cell death, recent studies have
uncovered new effectors and cell death pathways and revealed a
more complex and intertwined landscape of what we call cell
death. Here, we review the current understanding of programmed
cell death. We focus on apoptosis, necroptosis, and pyroptosis and
on how these processes regulate the immune response.

NECROPTOSIS: REGULATED NECROSIS WITH PASSIVE AND
ACTIVE PROINFLAMMATORY FUNCTIONS
Mechanisms of action and regulation of necroptosis
Apoptosis was long thought to be the only regulated cell death
pathway. In addition, its counterpart necrosis was considered to
be rather ‘clumsy’ and to culminate with the loss of membrane
integrity and passive leakage of intracellular contents. It has now
become clear that a nonapoptotic form of cell death exists that
has evolved to detect pathogens and promote tissue repair. This
type of regulated cell death, coined necroptosis, occurs following
the activation of the tumor necrosis receptor (TNFR1) by TNFα,3
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even though TNFα has long been considered an inducer of
apoptosis.
Activation of other cellular receptors triggers necroptosis. These

receptors include death receptors (i.e., Fas/FasL),4 Toll-like
receptors (TLR4 and TLR3)5–7 and cytosolic nucleic acid sensors
such as RIG-I and STING, which induce type I interferon (IFN-I) and
TNFα production and thus promote necroptosis in an autocrine
feedback loop.8–10 Most of these pathways trigger NFκB-
dependent proinflammatory and prosurvival signals. However,
additional inhibition of the proteolytic enzyme Caspase-8 by
microbes or pharmacological agents triggers the necroptotic
pathway (Fig. 1). Downstream of the abovementioned receptors,
active RIPK1 is recruited within an oligomeric complex that
includes FADD, caspase-8 and caspase-10.11,12 In the absence of
caspase-8 activity, RIPK1 recruits and phosphorylates RIPK3,
forming a complex called the ripoptosome.13,14 The RIPK1/RIPK3
complex recruits and phosphorylates MLKL, thus forming the
necrosome.15,16 MLKL phosphorylation induces a conformational
change leading to the exposure of a 4-helical bundle domain
(4HBD). Initial studies speculated that the RIPK1/RIPK3/MLKL
pathway induces cell death through mitochondrial destabilization.
This effect occurs via a phosphoglycerate mutase family member
5 (PGAM5)- and dynamin-related protein 1 (DRP1)-dependent
pathway.17 However, mice with genetic deficiency of Pgam5 or

Drp1 display no alterations in TNF-induced necroptosis, challen-
ging this theory.16,18 Further disproving the potential involvement
of mitochondria in necroptosis induction, the use of the ROS
scavenger butylated hydroxyanisole did not affect TNF-induced
necroptosis.19 Instead, two nonexclusive models explain how
MLKL compromises cellular integrity: (1) MLKL constitutes a
platform at the plasma membrane for the opening of calcium or
sodium ion channels, thus enabling ion influx, cell swelling, and
rupture,20,21 and (2) MLKL itself forms pores in the plasma
membrane through interaction between a positively charged
patch in the 4HBD and negatively charged phosphatidylinositol
phosphates (PIPs) present at the membrane.22–24 In addition,
MLKL oligomerization and membrane translocation seem to
depend on a specific inositol phosphate (IP) code.25 Indeed,
Dovey and colleagues demonstrated that phosphorylation of
MLKL by RIPK3 alone is not sufficient for MLKL translocation to the
membrane. Instead, MLKL requires the interaction of its N-terminal
domain with highly phosphorylated IPs (e.g., IP6). This interaction,
in turn, displaces the sixth α-helix of MLKL, which acts as a
molecular brace believed to inhibit interactions with the MLKL N-
terminal domain and control MLKL oligomerization.24 In line with
these results, expression of the MLKLD139V mutant, which alters the
two-helix brace structure, endows MLKL with RIPK3-independent
constitutive killing activity, causing lethal postnatal inflammation

Fig. 1 Necroptosis is triggered downstream of death domain receptors (e.g., TNFR and Fas) and Toll-like receptor (TLR)-4 or TLR3. Upon
activation, these receptors recruit the adapter proteins FADD, TRADD, and TRIF, which interact with RIPK1 and caspase-8 or -10. First, RIPK1 is
ubiquitylated by IAPs, keeping it nonfunctional and enabling proinflammatory downstream activity via NFκB. After detection of a “death
signal”, RIPK1 is deubiquitylated by CYLD and can thus recruit RIPK3. The RIPK1/RIP3 complex recruits and phosphorylates MLKL. In the
presence of highly phosphorylated inositol phosphate (IP6), phosphorylated MLKL oligomerizes, thus forming the necrosome. MLKL oligomers
translocate to phosphatidylinositol phosphate (PIP)-rich patches in the plasma membrane and form large pores. Ultimately, MLKL pores lead
to necroptotic cell death by allowing ion influx, cell swelling, and membrane lysis followed by the uncontrollable release of intracellular
material. The cytosolic nucleic acid sensors RIG-I and cGAS/STING also contribute to necroptotic cell death, as they induce IFN-I and TNFα and
thus promote necroptosis via an autocrine feedback loop. Downstream of TNFR or TLR engagement, active caspase-8 cleaves the cytokine
blocker N4BP1, thus promoting an increase in cytokine release. Once activated, RIPK3 phosphorylates the pyruvate dehydrogenase complex
(PDC) in mitochondria and promotes aerobic respiration and mitochondrial ROS production. In the presence of cytosolic DNA released from
infecting microbes, DNA-dependent activator of IFN regulatory factor (DAI) recruits RIPK3 and thus bypasses RIPK1 for activation of MLKL and
formation of the necrosome complex
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in homozygous mutant mice.26 Moreover, MLKL oligomerization
was recently shown to dictate the kinetics and threshold of
necroptotic cell death. Indeed, phosphorylated MLKL first
assembles into cytosolic polymeric necrosomes and then traffics
with tight junction proteins to the plasma membrane, where both
accumulate to form micron-sized structures.27 Although mito-
chondrial damage and ROS production are not considered to be
directly involved in the establishment of necroptotic cell death, a
recent study by Yang and colleagues showed that RIPK3 instead
has downstream effects on mitochondria: RIPK3 directly phos-
phorylates and activates the E3 subunit of the pyruvate
dehydrogenase complex and promotes aerobic respiration and
mitochondrial ROS production.28 This finding could explain the
link between necroptosis and mitochondrial destabilization.
Given its powerful and nonreversible nature, the necroptotic

pathway’s early steps must be heavily regulated. Indeed, upon
TNFR1 engagement, RIPK1 is rapidly recruited to signaling
complex I, where it interacts with TRADD and TRAF2. At this
location, TRAF2 and TRAF5 control the polyubiquitylation of RIPK1
via cIAP1/2, limiting the cell death function of RIPK1.29–34 Similarly,
after TLR activation (e.g., by LPS or poly-(I:C)), the function of
RIPK1/3 is regulated by cIAP1/2 and XIAP through
ubiquitylation.30,31 Importantly, ubiquitylation of RIPK1 and RIPK3
not only prevents cell death but also is essential for NFκB-
dependent induction of proinflammatory genes.35 Furthermore,
low extracellular pH was recently shown to act on a highly
conserved histidine (His151) in the amino acid sequence of RIPK1,
thus inhibiting its kinase activity and preventing cell death.36 In
addition to these in vitro data, generating knockin mice
expressing Ripk1H151N would undoubtedly help determine the
physiological function of this pH sensitivity of RIPK1.
Contributing to the “death signal”, CYLD deubiquitylates TRAF2

and RIPK1, allowing the formation of the ripoptosome.37–41 The
mitochondrial protein Smac further promotes necroptosis by
triggering proteasomal degradation of cIAP1/2 and XIAP.42

Consequently, Smac mimetics have been developed as therapeu-
tic tools against cancer cells or HIV-infected cells.43–45 These
agents and other anticancer drugs promote the formation of the
ripoptosome through depletion of XIAP and cIAP1/2 independent
of death receptor activation.11

The immune system has evolved a way to bypass inhibition
upstream of RIPK3 as a rapid countermeasure to block viral spread.
Indeed, the murine cytomegalovirus (MCMV) DNA genome was
found to activate the DNA-dependent activator of IFN regulatory
factor (DAI or ZBP1), which binds directly to RIPK3 through its
RHIM domain, virtually bypassing RIPK1.46,47 More recently, Lim
et al. proposed a more ambivalent role for DAI in regulating
necroptosis in macrophages.7 These authors demonstrated that
despite driving necroptosis in the absence of RIPK1, DAI protects
autophagy-incompetent Atg16l1−/− cells from necroptosis. Thus,
depending on the context, DAI acts as either an activator or a
suppressor of necroptosis. Since inhibition of autophagy results in
the accumulation of DAI,48 it can be speculated that a certain
threshold concentration of DAI is necessary for it to execute its
prosurvival function. However, precisely how these opposite
functions of DAI are regulated remains to be elucidated.
Notably, DAI is not the only RHIM domain-containing protein

capable of activating RIPK3 in the absence of RIPK1. Indeed, TRIF is
also known to interact with and directly activate RIPK3 in the
absence of RIPK1.6 Remarkably, during embryonic development,
RIPK1 plays a crucial prosurvival role that is independent of its
kinase activity.49–51 Indeed, Ripk1−/− mice die soon after birth due
to uncontrolled caspase-8- or RIPK3-dependent apoptosis or
necroptosis, respectively. Presumably, RIPK1-RHIM usually acts as
a “sponge” preventing the activation of RIPK3/MLKL signaling by
TRIF or DAI, pathways that are currently identified as effectors of
the lethality of Ripk1 knockout.52 Collectively, these data
demonstrate the essential role of the RHIM domain interaction

as both a trigger and a regulator of necroptosis. The RHIM-
containing protein that is responsible for pressing the “RIPK3
trigger” seems to depend on the cellular context and the
upstream pathway activated. A more extensive study of the
regulatory processes involved in the induction of necroptosis is
necessary to fully solve this puzzle. Further complicating the
understanding of necroptosis’s regulatory mechanism, mouse and
human MLKL orthologs have species-specific requirements for
interaction with their cognate RIPK3 partners due to the
coevolution of both the MLKL C-terminal pseudokinase domain
and the RIPK3 kinase domain.53 Hence, although the mechanism
of MLKL-dependent plasma membrane permeabilization is similar,
direct transposition of regulatory mechanisms between species
may be too simplistic and should be proposed cautiously.

Necroptosis in infection and sterile inflammation
Necroptosis has mainly been studied downstream of the
activation of death domain receptors or pattern recognition
receptors (PRRs) as one response to microbial infection. For
example, in the context of Yersinia infection, RIPK3-mediated
necroptosis is beneficial to the host.54,55 On the other hand, lung
infection with Staphylococcus aureus induces necroptotic epithelial
cell death, which is detrimental to the host.56 Interestingly, recent
work indicates that microbes can directly target the necroptotic
pathway to prevent cell death and promote their replication.
Indeed, the enterohemorrhagic Escherichia coli (EHEC)-expressed
virulence effector NleB1 modifies arginine residues in TRADD,
FADD, and RIPK1, which blocks apoptosis and necroptosis.57,58

Some viruses have also evolved immune evasion strategies to
prevent cell death: the MCMV-encoded viral inhibitor of RIP
activation (vIRA) directly targets the DAI-RIPK3 complex through
its own RHIM domain, thus preventing necroptosis and allowing
viral replication.46,59 Of note, vIRA was shown to prevent
necroptosis downstream of Fas and TNFR160,61 or TLR3 and
TLR46,60 by targeting RIPK1/RIPK3 or TRIF/RIPK3, respectively.
Although MCMV-encoded vIRA induces NFκB early during
infection, at later time points, it blocks NFκB-dependent cytokine
induction and proinflammatory signaling downstream of TNFR1
by targeting RIPK1 and NEMO for proteasomal or lysosomal
degradation, thus covering all loose ends.60,62,63 Similarly, HCMV
has developed countermeasures to prevent necroptosis, but in
contrast to those of MCMV, these actions of HCMV seem to
happen downstream of RIPK3/MLKL activation.64 A recent study
by Fletcher-Etherington et al. proposed HCMV-encoded vICA as an
inhibitor of necroptosis through direct interaction with MLKL.65 In
humans, herpes simplex virus-1 and -2 also encode the RHIM-
containing proteins ICP6 and ICP10, which block TNF-induced
necroptosis by preventing the interaction of RIPK1 and RIPK3
through a RHIM-mediated decoy.66 Interestingly, in mice, ICP6 has
the opposite effect, as it induces necroptosis through direct
interaction with RIPK1 and RIPK3,67 further underscoring the
differences between mouse and human necroptotic mechanisms.
The fact that viruses have evolved tools to escape necroptotic

cell death is a testimony to this pathway’s importance in fighting
microbial infection. Once activated, necroptosis triggers a process
of cellular autodestruction, resulting in passive release of
cytokines, DAMPs, and PAMPs. These mediators provide proin-
flammatory cues that recruit immune cells to stimulate efficient
antimicrobial responses and activate the tissue repair machinery.
Upon cellular erosion, elements of the infecting microbe are
released into the extracellular environment, where they activate
well-known proinflammatory pathways through a large variety
of PRRs.
In sterile inflammation, such as during the onset of a particular

cancer, necroptosis is essential for the immune system to mount
an adequate response. Low MLKL expression has been associated
with poor prognosis in patients with breast, ovarian, gastric, colon,
and pancreatic cancers.68 In animal studies, intratumoral delivery
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of an autoactive RIPK3 construct or the use of necroptotic cells as
a vaccination strategy generated efficient antitumoral immune
responses.69,70 Interestingly, effective antitumor immunity
depends on the NFκB pathway rather than on MLKL-dependent
disruption of cell integrity. This pattern indicates that cytokine
release or other events (e.g., posttranslational modification of
effector proteins) triggered by the NFκB pathway are important
messengers released from dying cells. For instance, proper cross-
priming of effector CD8+ T cells requires the RIPK1/RIPK3 pathway
and NFκB signaling71 and is responsible for the antitumor immune
response induced by necroptotic cell death.70 Hence, necroptosis
is an essential proinflammatory cell death pathway not only
because of the uncontrolled release of cellular content resulting
from membrane permeabilization but also because of the well-
regulated proinflammatory pathways triggered in parallel to
necrosome assembly, which allow the expression of proinflam-
matory cytokines before cell disintegration.
Further demonstrating that there is more to necroptosis than

passive release of cellular content, recent work by Tanzer
et al. proposed the existence of a kinetically regulated necroptotic
secretome.72 Using unbiased label-free mass spectrometry, the
authors found that at early time points (3 h) following activation of
necroptosis, myeloid cells boost the release of conventionally
secreted proteins through the ER-Golgi apparatus. Moreover,
dying cells also amplify the production of extracellular vesicles
enriched with MLKL, a previously described necroptosis-
counteracting mechanism.73,74 However, at later time points
(5–7 h), the levels of cytokines usually released through the
conventional secretory pathway (e.g., CCL2 and IL-8) are reduced
in the secretome of necroptotic cells. Instead, late-stage necrop-
totic cells use lysosomal exocytosis for the release of intracellular
content.
Interestingly, exocytosis has already been described as a

membrane repair mechanism triggered upon membrane permea-
bilization and as an ancient mechanism to remove infecting
microbes.75–78 It is tempting to speculate that these processes of
early shedding of MLKL from intact cells followed by lysosomal
exocytosis-mediated membrane repair exist to buy more time for
the cells to increase cytokine production and tailor an appropriate
proinflammatory signal before cell integrity is lost. This theory fits
with the finding that translation from mRNA coding for cytokines
continues in necroptotic cells (triggered by TNF or viral infection)
even after permeabilization of the plasma membrane to promote
the recruitment of immune cells.79 In line with these findings,
MLKL and RIPK3 levels in ICU patients’ peripheral blood showed
little difference from those in peripheral blood from healthy
donors upon arrival. However, MLKL and RIPK3 levels increase
over time and are predictive of poor patient survival.80,81

Interestingly, RIPK3 plasma levels were significantly elevated in
ICU patients needing ventilation, leading to ventilator-induced
lung injury.82 It is worth noting that in the context of COVID-19,
critically ill patients require ventilation, which, in some cases, is
thought to induce ventilator-induced lung injury. A small study
found that the plasma RIPK3 level was positively correlated with
the severity of COVID-19 in the patients tested (16 patients
total).83 These early findings warrant further investigation of a
potential role for necroptosis in COVID-19 development and other
mechanical ventilation-induced lung injuries. However, one must
also point out that none of the mentioned studies used analysis
methods specific for active MLKL or RIPK3 (i.e., phosphorylation-
specific ELISA). Such tools are now available84 and will be required
to conclusively determine the role of necroptosis in the
development of acute or chronic inflammatory diseases via
analysis of patient samples.
Nevertheless, since necroptosis plays a considerable role in the

induction of inflammation, it is not surprising that necroptosis is
involved in the onset of disease. Several animal studies have
demonstrated a role for necroptosis in tissue damage induced by

ischemia-reperfusion injury such as that occurring with stroke,85

kidney ischemia,86 myocardial infarction,87,88 or organ transplan-
tation.89 Furthermore, RIPK1 and RIPK3 have been implicated in
the development of chronic inflammatory diseases such as
chronic obstructive pulmonary disease,90,91 rheumatoid arthritis,92

multiple sclerosis,93 and Crohn’s disease94 and in the exacerbation
of TNF-induced systemic inflammatory response syndrome.88,95–98

However, since RIPK1 and RIPK3 have necroptosis-independent
functions, it is difficult to decipher the proper role of necroptosis
in models using pathway inhibition (e.g., using the RIPK1 inhibitor
Nec-1) or Ripk1/Ripk3 gene deletion approaches. Some studies
have already shown a role for RIPK3 in inducing MLKL-
independent inflammation.92 Using tools such as knockin mice
expressing mutants of RIPK1 or RIPK3 with specific domain
alterations inhibiting only part of their function may help to
separate the necroptotic effects from the NFκB-related proin-
flammatory functions of these multitasking proteins.

PYROPTOSIS: A MASTER REGULATOR OF INFLAMMATION
Pyroptosis is a type of cell death culminating in the loss of plasma
membrane integrity and induced by activation of so-called
inflammasome sensors. These include the Nod-like receptor
(NLR) family, the DNA receptor Absent in Melanoma 2 (AIM2)
and the Pyrin receptor. Inflammasome sensors detect a variety of
PAMPs and DAMPs released by infecting microbes or through
dysregulated cellular pathways. Thus, inflammasomes constitute a
strong defense against pathogens or cell stress, which results in
lytic cell death, preventing microbial spread, while alerting the
immune system of imminent danger. However, unbalanced
activation of this essential physiological sentinel function leads
to the development of pathological inflammation. NLRP3 is the
inflammasome sensor most strongly associated with the devel-
opment of uncontrolled inflammation. For instance, recent
evidence points to a correlation between COVID-19 severity and
NLRP3 activation by SARS-CoV-2 infection.99 Whether the activa-
tion of NLRP3 in these settings relates to its previously described
sensing of viral RNA100,101 or cellular perturbations remains to be
investigated. NLRP3 has also long been studied for its role in
chronic inflammatory diseases such as Alzheimer’s disease102–105

and atherosclerosis,106 with a noticeable impact on health systems
worldwide. We recently showed that prolonged intake of a
Western diet triggers NLRP3-dependent epigenetic reprogram-
ming of granulocyte/monocyte precursors in bone marrow.107

Interestingly, the NLRP3 systemic inflammatory signature induced
by the Western diet remained imprinted in myeloid cells even
after a change to a healthier diet. This is an excellent example of
the extent to which pyroptotic cell death affects organisms and
explains how crucial physiological control mechanisms are to
avoiding undesired inflammation.

Mechanisms of inflammasome activation
Mechanistically, when activated, inflammasome sensors oligomer-
ize and recruit the adapter protein apoptosis-associated speck-like
protein containing a CARD (ASC), thus seeding the formation of
micron-sized polymeric structures known as inflammasomes or
“ASC specks” (Fig. 2). Within the canonical pathway, inflamma-
somes act as a platform for activating the proteolytic enzyme
caspase-1, which dimerizes as a proform and generates the fully
active p33/p10 species through autoproteolysis.108 Active caspase-
1 can then process the cytokines interleukin (IL)-1β and IL-18, also
expressed as proforms; thus, active caspase-1 is required for the
maturation of these respective ILs into 17 and 18 kD active
cytokines. Activation of caspase-1 also enables processing of
gasdermin D (GSDMD) into a 30 kD fragment able to oligomerize
and lock into the plasma membrane, thus forming pores.109–112

GSDMD cleavage relies on the presence of its C-terminal domain
for recruitment of caspase-1, while the GSDMD N-terminal domain
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exhibits propyroptotic activity.113 In more advanced stages,
GSDMD pores lead to membrane destabilization and cell lysis,
enabling the release of DAMPs such as HMGB1 that are too large
to escape the cell through the pores.114 Adding to the complexity
of pyroptosis, several additional caspases are implicated in a
noncanonical pathway, directly targeting GSDMD for cleavage.
Murine caspase-11 was first described as a caspase-1 interactor
more than two decades ago.115 It was later accepted as an effector
of LPS lethality in its own right116–119 and was more recently
shown to promote pyroptosis in the absence of caspase-1 by
directly targeting GSDMD upon stimulation with intracellular
LPS.120,121 In humans, detection of intracellular LPS is mediated by
caspase-4 and -5, which also cleave GSDMD in the absence of
caspase-1.121 Remarkably, these proinflammatory caspases not
only mediate the lethality of intracellular LPS but also act as
receptors. Indeed, caspase-4 and -11 interact directly with LPS,
which causes their oligomerization and autoactivation.122 How-
ever, how LPS is detected by caspase-4 and -11 remained elusive
until recently, when Santos et al. demonstrated that the activation
of TLR4 by LPS initiates an IFN response that triggers the
expression of guanylate-binding proteins (GBPs).123 GBPs are
essential for the activation of caspase-11. In human cells, GBPs are
recruited to the Salmonella bacterial surface after they escape the
vacuole.124 GBP1 binds to LPS with high affinity, allowing the

formation of a multimolecular complex with GBP2 and GBP4,
which then promotes recruitment and activation of caspase-4.
Even though caspase-11 and caspase-4 promote pyroptotic cell
death, their mechanism differs from that of caspase-1. Indeed, they
mediate pyroptosis without enabling maturation of the proin-
flammatory cytokines IL-1β or IL-18, long considered a signature of
pyroptotic cell death. IL-1β and IL-18 still rely on NLRP3 activation
by GSDMD-dependent K+ efflux and ASC/caspase-1-dependent
downstream signaling. These findings highlight the dual role of
GSDMD in pyroptosis—not only executing pyroptosis but also
promoting its amplification. ASC specks themselves are released
from pyroptotic cells and remain stable for several days in tissues
or the circulation,125,126 thus extending their proinflammatory
potential. Consistent with their extracellular proinflammatory
potential, extracellular ASC specks accumulate in the brain and
act as seeds for amyloid-β and tau protein deposition and plaque
formation, hallmarks of neuroinflammation.102–105 Hence, the
ability of intracellular LPS and GSDMD pores to activate NLRP3
may constitute a mechanism to further extend the scope and
duration of the proinflammatory effect of pyroptosis.

Regulation of pyroptosis
After the activation of inflammasomes, the ESCRT-dependent
membrane repair pathway first attempts to contain the damage

Fig. 2 Pyroptosis is an inflammatory form of cell death triggered by intracellular sensors such as NLRP3 (used here as an example) that detect
DAMPs, PAMPs, membrane disturbances, osmotic imbalances, and ion efflux, among other stimuli. Upon activation, these sensors recruit the
adapter ASC, forming a micron-sized structure called the inflammasome. These oligomeric structures act as platforms for the activation of
caspase-1. Active caspase-1 cleaves proforms of the interleukin-1 family cytokines IL-1β and IL-18. Caspase-1 also activates gasdermin D
(GSDMD), unmasking the N-terminal domain, which forms pores in the plasma membrane, in turn enabling the release of mature IL-1β and IL-
18 and causing cell swelling (a “ballooning effect”) and pyroptosis. In addition, intracellular recognition of LPS can result in pyroptosis:
guanylate-binding proteins (GBPs) bind to the surface of bacteria and assemble a caspase-4/11-activating platform composed of GBP1, 2, 3,
and 4, and the cytosolic precursors of caspase-4 and -11. Active caspase-4 and -11 cleave GSDMD, leading to pyroptosis. Notably, caspase-4
can additionally induce proteolytic cleavage of IL-18. As an inherently inflammatory form of cell death, pyroptosis has several layers of
regulation. Expression of NLRP3 and the cytokine IL-1 requires priming via stimulation of TLRs, TNFR or IL-1R followed by NFκB activation.
Inflammasome sensors are heavily regulated through posttranslational modifications, such as phosphorylation and ubiquitylation (indicated
in the box) or by cleavage
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inflicted by GSDMD pores.127 However, if this last attempt to
survive is unsuccessful, GSDMD-mediated loss of membrane
integrity results in pyroptosis. It is interesting to note that release
of IL-1β and IL-18 does not require complete loss of membrane
integrity, as both cytokines are released through GSDMD pores in
the absence of membrane lysis (i.e., in the presence of
glycine).128,129 Membrane repair through the ESCRT pathway is
thus preferentially a modulator of the immune response down-
stream of inflammasome activation by allowing cytokine release
but limiting—to a certain extent—the uncontrolled release of
cellular content. Moreover, in neutrophils, GSDMD pores down-
stream of NLRC4 activation are uncoupled from cell death but
enable IL-1β secretion.130,131 This resistance of neutrophils to
pyroptosis is possible because of the intracellular localization of
GSDMD pores withing membranes of granules and autophago-
somes, facilitating sustained release of mature IL-1β while
preventing plasma membrane lysis.131 Adding to the under-
standing of GSDMD-independent release of IL-1β, Monteleone
et al. used a combination of GSDMD knockout and overexpression
of mature IL-1β to demonstrate that caspase-1 cleavage of pro-IL-
1β is essential and sufficient for its release from macrophages.132

In this model, caspase-1 cleavage of GSDMD merely accelerated
the release of IL-1β. They showed that a polybasic motif in mature
IL-1β allows its relocation to plasma membrane areas enriched in
the phospholipid PIP2. From those locations, active IL-1β may be
released via membrane ruffling. Many GSDMD-independent
mechanisms have been proposed, including packaging of IL-1β
into secretory lysosomes, release in ectosomes or exosomes, and
even release in secretory autophagosomes.132 The settings in
which cells commit to full pyroptosis or restricted IL-1β release are
not fully understood. The regulatory mechanisms governing this
decision might be cell-specific and influenced by the local
requirements and kinetics of IL-1β responses.
Furthermore, GSDMD knockout does not seem to block cell

death entirely. In a study by Kayagaki et al., macrophages derived
from two different Gsdmd−/− mouse strains could not rescue
canonical inflammasome-mediated cell death as measured by the
release of lactate dehydrogenase.120 This inability indicates that
pyroptosis encompasses more than simply GSDMD-dependent
membrane destabilization. In line with this finding, the group
of Andrew Bowie recently described a role for the TLR-IL-1R
domain-containing family protein SARM in uncoupling GSDMD
activation from IL-1β release and pyroptosis.133 They showed that
in macrophages, SARM inhibits IL-1β maturation by upstream
regulation of NLRP3 activation while promoting mitochondrial
depolarization-dependent pyroptosis. The same group previously
described a role for SARM as an inhibitor of TLRs.134 Whether this
newly identified role of SARM is linked to its function as a TLR
antagonist (e.g., regulating cell priming upstream of inflamma-
some activation) remains to be investigated.
Recent advances in understanding the mechanisms modulating

events upstream of GSDMD activation and pyroptosis have
revealed several posttranslational modifications of NLRP3. NLRP3
can be ubiquitylated and targeted for proteasomal degradation by
TRIM31 in peritoneal macrophages.135 Interestingly, LPS treatment
increases the expression of TRIM31, indicating a potential
regulatory feedback mechanism to diminish the inflammatory
response. Similarly, in lung epithelial cells, the E3 ubiquitin ligase
FBXL2 was proposed as another enzyme capable of preventing
NLRP3 activation by targeting it to the proteasome.136 Another E3
ubiquitin ligase, MARCH 7, was shown to inhibit NLRP3 down-
stream of dopamine-induced D1 receptor signaling.137 Conversely,
after priming by LPS, FBXL2 itself is ubiquitylated by FBXO3 and
targeted to the proteasome,136 releasing the blockade of NLRP3.
Moreover, the deubiquitinating enzyme BRCC3 was shown to
directly deubiquitinate NLRP3, thus protecting it from proteasomal
degradation.138 Another layer of NLRP3 regulation is its phosphor-
ylation on Ser291 (or Ser295 in humans) by protein kinase A,

which induces its K48- and K63-linked ubiquitination and
subsequent proteasomal degradation.139,140 Interestingly, Golgi-
specific protein kinase D was proposed to phosphorylate NLRP3
on the same serine residue and instead promote NLRP3
activation.141 This dichotomy underlines the multidimensional
regulation of NLRP3, which depends not only on PTMs but also on
its cellular localization. Other phosphorylation/dephosphorylation
events control NLRP3 activity after priming. Song et al. showed
that after LPS priming, NLRP3 is phosphorylated on Ser194 by c-
Jun N-terminal kinase (JNK)1, which facilitates the oligomerization
of NLRP3 upon activation by canonical stimuli.142 Another study
showed that in monocytic cells, dephosphorylation of NLRP3 on
Tyr861 by protein tyrosine phosphatase nonreceptor 22 (PTP22)
induced NLRP3 activation.143 We showed that dephosphorylation
of NLRP3 on Ser5 by phosphatase 2A is a prerequisite for its
interaction with ASC and downstream activation of caspase-1 in
macrophages.144 Whether these pathways synergize to tightly
control NLRP3 activity remains elusive. It is somewhat more likely
that these pathways are engaged in a cell type- and stimulus-
specific manner, an explanation that would correspond better to
the requirement for different upstream effectors and different
subcellular localizations of NLRP3.
The regulation of NLRP3 function is the best-studied example of

the tight regulation involved in the activity of inflammasome
sensors and the downstream induction of pyroptosis. Other
sensors, such as NLRP1 and NLRC4, are also regulated through a
combination of ubiquitination and phosphorylation or require
cleavage for their activation.145 Remarkably, much progress has
recently been made in the understanding of NLRP1 activation and
the identity of the NLRP1 ligand. In epithelial cells, both mouse
NLRP1B and human NLRP1 require cleavage of their C-terminal
CARD by pathogen-derived proteases to activate caspase-1.146–148

While the existence of a potential ligand for human NLRP1 has
long remained elusive, Bauernfried et al. have shown that
NLRP1 senses double-stranded RNA molecules such as those
generated by Semliki Forest virus replication.149 However, whether
binding to dsRNA and cleavage of the NLRP1 C-terminal domain
are interdependent remains to be elucidated. Interestingly,
CARD8, another inflammasome receptor related to NLRP1 (also
containing a C-terminal FIIND-CARD structure), was recently
discovered. Normally repressed by dipeptidyl peptidase (DPP) 8
and 9, CARD8 is activated in CD4+ and CD8+ T cells treated with
DPP8/9 inhibitors and induces an ASC-independent form of
pyroptosis.150,151 CARD8 activation requires an autoprocessing
step with subsequent degradation of its N-terminal region by the
proteasome to free the C-terminal FIIND-CARD region, allowing
direct recruitment of caspase-1.152

The evolution of such complex regulatory mechanisms across
all effector arms of pyroptosis is a clear testimony to the harmful
effects of this form of cell death. Remarkably, the discovery of
GSDMD rapidly commenced a race by many pharmaceutical
companies to develop GSDMD inhibitors, which could constitute
flexible options for treating a plethora of pyroptosis-related
chronic inflammatory diseases. Time will tell whether one-shot
blockade of all propyroptotic pathways is a viable clinical option.

BREAKING THE SILENCE OF APOPTOSIS
Apoptosis is a mechanism of regulated cell death conserved
across the animal kingdom that has been the subject of intensive
research for the past three decades and was, for most of this
period, believed to be the only regulated type of cell death. An
essential feature of apoptosis is the release of cytochrome c from
mitochondria, regulated by a balance between proapoptotic and
antiapoptotic proteins of the BCL-2 family, initiator caspases
(caspase-8, -9 and -10) and effector caspases (caspase-3, -6 and -7).
Apoptosis culminates in the breakdown of the nuclear membrane
by caspase-6, the cleavage of many intracellular proteins (e.g.,
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PARP and lamin), membrane blebbing, and the breakdown of
genomic DNA into nucleosomal structures.153,154 These events are
hallmarks of apoptosis and are commonly used to identify the cell
death pathway engaged (e.g., DNA laddering and caspase-3 and
PARP cleavage).

Apoptotic pathways and regulation
Mechanistically, two main pathways contribute to the caspase
activation cascade downstream of mitochondrial cytochrome c
release: the intrinsic and extrinsic pathways (Fig. 3).
The intrinsic pathway is triggered by dysregulation of or

imbalance in intracellular homeostasis by toxic agents or DNA
damage. It is characterized by mitochondrial outer membrane
permeabilization (MOMP), which results in the release of
cytochrome c into the cytosol. MOMP and the release of
cytochrome c trigger the formation of apoptosomes and
caspase-3 activation155 and are generally considered the point
of no return in apoptotic cell death. The release of cytochrome c
to the cytosol is promoted by proapoptotic proteins of the BCL-2

family, such as BAX, BAK, and PUMA. This family can be further
divided into activators (e.g., BIM, BID, and PUMA)156–158 and
sensitizers (e.g., BAD, NOXA, and BIK).159 Activator proteins bind
directly to apoptosis’s main effectors (BAX and BAK), which
undergo conformational changes allowing their oligomeriza-
tion.156–161 Oligomerized BAX and BAK form pores in the
mitochondrial membrane, causing MOMP.162,163 Sensitizer pro-
teins contribute to apoptosis by inhibiting antiapoptotic factors or
controlling the cellular localization of BAX and BAK
monomers.161,164 Interestingly, other members of the BCL-2
family, BCL-2 and BCL-XL, inhibit apoptosis.159,165–167 These
antiapoptotic proteins possess two BCL-2 homology (BH3)
domains, which form a binding groove that sequesters activator
or sensitizer BCL-2 proteins or the BAX and BAK complexes.158,168

A fine balance of binding affinities and expression levels of BCL-2
proteins ultimately regulates sensitivity or resistance to apoptosis.
This balance is further influenced by posttranslational
modification169,170 and the cytoplasmic localization171 of BCL-2
proteins. Furthermore, cyclin-dependent kinases moderate

Fig. 3 Apoptosis is triggered through two major pathways referred to as the intrinsic and extrinsic pathways. The intrinsic pathway is
activated by oligomerization of the B-cell lymphoma-2 (BCL-2) family proteins BAK and BAX. BAK/BAX oligomers form pores in the
mitochondrial outer membrane, leading to the release of cytochrome c into the cytosol. Activation of BAK/BAX is regulated by proapoptotic
(e.g., BAD and BID) or antiapoptotic (e.g., BCL-2) BCL-2 family proteins. Cytochrome c binds to Apaf-1, which recruits procaspase-9, forming the
apoptosome. In the apoptosome, caspase-9 is activated by autoproteolytic cleavage, initiating the caspase-processing cascade. The extrinsic
pathway is activated by engagement of membrane receptors such as Tumor necrosis factor (TNF) receptor 1 (TNFR1), death receptors, or Toll-
Like Receptors (TLRs). These proteins induce the formation of signaling complexes involving TNFR1-associated death domain protein (TRADD)
or Fas-associated death domain protein (FADD), receptor-interacting serine/threonine protein kinase 1 (RIPK1) and procaspase-8.
Ubiquitylation of RIPK1 by cellular inhibitors of apoptosis (cIAPs) stabilizes the complex and induces the activation of the transcription
factor NFκB. FLIP, also present in the DISC, limits caspase-8 activity while promoting cell survival, cell proliferation, and the production of
proinflammatory cytokines. Imbalances in this pathway, such as those imposed by cellular stress, allow the activation of caspase-8 and
caspase-10, which in turn triggers the caspase activation cascade. Once active, executioner caspases (i.e., caspase-2, -6, -8 and -10) bring about
programmed apoptotic death. Apoptotic cells release messengers in the form of nucleosomal structures, shed receptors, anti-inflammatory
metabolites or molecules packaged in apoptotic extracellular vesicles (ApoEVs). Phosphatidylserine (PS) molecules exposed on the outer
surface of the plasma membrane function as “eat me” signals for phagocytes
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apoptosis by transcriptionally repressing sensitizers158,172,173 or
stabilizing antiapoptotic factors such as Mcl-1.174–176 The tran-
scription factor p53, one of the first responders to DNA damage
and a trigger of the DNA repair machinery and cell cycle arrest, is
another proapoptotic regulator. P53 targets promoter regions
that control the expression of several proapoptotic BCL-2
proteins.177–179 These data emphasize the delicate balance of
apoptotic processes, with both the pro- and antiapoptotic teams
pulling hard on the rope in a “tug-of-death” game.
MOMP also induces the formation of the apoptosome, a

massive complex comprising cytochrome c, apoptosis protease-
activator factor 1 (Apaf-1), dATP, and procaspase-9.180–184 The
assembled apoptosome activates the apoptosis initiator caspase-
9. Caspase-9, in turn, cleaves the proforms of the proteases
caspase-3 and caspase-7 and unleashes their apoptotic execu-
tioner function.182,183,185–187 Interestingly, similar to their roles in
inhibiting RIPK1/RIPK3-dependent necroptosis, proteins of the
IAP family (IAP1/2 and XIAP) can also inhibit caspase-3 activa-
tion.187–191 Furthermore, XIAP interacts with caspase-9 and
caspase-7, thus retaining tight control of the apoptotic
process.187,189,191–193 However, Smac and HTRA2, released with
cytochrome c during MOMP, function as inhibitors of
XIAP,188,192,194–200 promoting apoptosis. Caspase-3 itself can
further promote apoptosis by processing caspase-9 into a p10
fragment lacking the XIAP docking domain and thus evading
inhibition.185 Once activated, as the last step of the apoptotic
process, caspase-3 and caspase-7 cleave several other procaspases
(i.e., caspase-2, -6, -8, and -10) into their active forms, creating an
apoptosis-amplifying cascade.153,154,185,201,202

The second arm of the apoptotic pathway, known as the
extrinsic pathway, is initiated by activation of cell surface death
receptors. Proapoptotic death receptors include TNFR1/2,203,204

Fas,205,206 and the TNF-related apoptosis-inducing ligand (TRAIL)
receptors DR4190,207–209 and DR5.190,208–212 Upon activation by
their ligands (i.e., TNFα, FasL or TRAIL, respectively), death
receptors oligomerize to form platforms at the cell surface. This
event leads to the recruitment of adapter proteins (TRADD and
FADD) and the activation of the apoptotic initiator caspases
caspase-8 and -10, forming the death-inducing signaling complex
(DISC).213–219 Activation of caspase-8 and -10 is regulated by a
caspase-like protein, FLIP, also present in the DISC.220,221 Another
protein regulating the activation of the extrinsic apoptotic
pathway is RIPK1. Indeed, even before necroptosis was dis-
covered, RIPK1 had long been known to be recruited to the DISC,
interacting with FADD and TRADD through binding with their
death domains.214,222,223 Through posttranslational modifica-
tions, RIPK1 can promote both a prosurvival NFκB-mediated
pathway and a prodeath pathway either through apoptosis or, in
the absence of active caspase-8, through necroptosis, as
described earlier.42,224 At early stages of activation, recruitment
of TRADD, procaspase-8, ubiquitinated RIPK1, and the regulatory
protein FLIP to the DISC limits the proapoptotic function of
caspase-8, while promoting the proinflammatory and NFκB-
dependent signaling pathway.214,225,226 This prosurvival com-
plex, also known as complex I, is later either internalized or
completely detached from the receptor to promote the
formation of complex II, which has proapoptotic activity.214,222

The importance of the integrity of complex I and RIPK1
ubiquitylation prior to the induction of apoptosis was recently
underscored in a study in which targeting TRADD with specific
small molecule inhibitors blocked apoptosis and activated the
beclin-1-mediated autophagic pathway.227 Within complex II,
procaspase-8 and procaspase-10 are activated through auto-
catalytic cleavage.217,228,229 This cleavage, in turn, activates
effector caspases (i.e., caspase-3, -6 and -7) either directly
through proteolytic cleavage229–231 or indirectly by activating
the BCL-2 protein family member BID, thus generating feedback
into the intrinsic pathway and promoting MOMP.232–236

Apoptosis is anti-inflammatory but not silent
The existence of “Find me” or “Eat me” signals released during
apoptosis to recruit phagocytic cells and promote cell clearance
has been known for some time.237 However, the full regulatory
effect of the released contents of apoptotic cells (i.e., secretome) is
only beginning to be understood. Recently, Tanzer et al. found a
specific secretome signature that distinguishes apoptosis from
other forms of cell death. As part of this signature, apoptotic cells
mainly release nucleosome components.72 Interestingly, this
group also detected ectodomain portions of cell surface proteins
shed by metalloproteinases (ADAM10/17), most of which were
common to both necroptosis and apoptosis. Shedding of cell
surface proteins enables dying cells to detach from their sites in
the tissue and block signal transduction in dying cells. Further-
more, receptor shedding can have an anti-inflammatory effect
through the generation of soluble decoy receptors. In line with the
release of active anti-inflammatory signaling molecules from
apoptotic cells, apoptotic extracellular vesicles (ApoEVs) have
been shown to perform immunoregulatory functions. Indeed,
during apoptosis, phosphatidylserine is actively externalized via a
caspase-3/7-dependent mechanism activating the scramblase
Xkr8.238,239 Once at the surface of ApoEVs, PS acts as an “eat
me” signal. Notably, cancer cells have the ability to suppress the
expression of Xkr8, a mechanism by which they evade detection
by phagocytes.238 Furthermore, PS promotes the expression and
secretion of the anti-inflammatory factor TGF-β by phagocytes,
thus underlying its local and systemic immunosuppressive
function.240,241 Further supporting a role for ApoEVs in shaping
the immune response of surrounding cells, ApoEVs have been
studied for their capacity to aid antigen presentation. Indeed,
ApoEVs released from Mycobacterium tuberculosis-infected cells
are engulfed by antigen-presenting cells and prime naive CD4+

and CD8+ T cells toward antimicrobial immunity.242–244

Recently, Medina et al. discovered that apoptotic lymphocytes
and macrophages release specific anti-inflammatory metabolites
while preserving their plasma membrane integrity.245 Importantly,
this group showed that specific metabolic pathways remain active
in apoptosis-committed cells and that the release of metabolites is
a dynamic process regulated by caspase-1-dependent opening of
pannexin-1 (PANX1) channels. Furthermore, this group found that
these metabolites induce gene programs in neighboring cells after
release, promoting suppression of inflammation, cell proliferation,
and wound healing. Hence, apoptotic cells not only promote their
own phagocytosis (i.e., through “find me” or “eat me” signals) but
also actively dampen inflammation and promote tissue repair in
their surroundings.

Apoptosis in health and disease
Apoptosis is an indispensable physiological mechanism of tissue
formation during embryogenesis and even after birth, when
constant cellular turnover and tissue regeneration are particularly
essential. Indeed, essential regulatory mechanisms that depend on
RIPK1 and caspase-8 orchestrate the fate of embryonic cells during
development.50–52 Apoptosis is also a necessary tool of the
immune system for fighting infections and removing cells with
irreparable DNA damage. For example, apoptosis is induced by
release of granzyme family molecules from activated T cells and
NK cells. Indeed, these proteolytic enzymes were found to target
several caspases219,246 or BID247–249 to convert these mediators
into their active form, thus bypassing upstream signals to force
targeted cells toward apoptosis. Interestingly, BID is the main
target of intracellular proteases upon exposure to cellular stress.
Indeed, cathepsins, proteases generally restricted to the lysosomal
compartment, are released into the cytosol after lysosomal
damage, where they target BID.250,251 Similarly, calpain proteases,
which have little activity at neutral pH and require high cytosolic
calcium levels, were also shown to activate BID following ischemic
reperfusion injury or cisplatin treatment.252,253 Because of their
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direct effect on apoptosis initiation, these proapoptotic pathways
have been utilized in several therapeutic strategies for
cancer.251,253 Furthermore, several antiapoptotic proteins (e.g.,
BCL-2, BCL-XL, and IAPs) are upregulated in cancer cells, thus
inhibiting apoptosis and promoting tumor survival. Hence, Smac
mimetics have been developed as endogenous proapoptotic
therapies in cancer.43 Similarly, many other antiapoptotic factors
are targeted by anticancer drugs using recombinant domain
mimetics as decoys (e.g., BH3), engineered peptides as inhibitors
of protein–protein interactions (e.g., stapled peptides), or small
molecule drugs targeting a large variety of factors to either
activate them (e.g., the BAX agonists SMBA1/3) or block them (e.g.,
the MCL-1 inhibitor AM-8621).254 Notably, p53 induces the
expression of both proapoptotic BCL-2 family members and
specific death receptors (i.e., Fas and DR5).177,210,255 Therefore,
therapeutic strategies promoting p53 activity (e.g., cisplatin256)
may facilitate apoptosis induction through both the intrinsic and
extrinsic pathways. Novel anticancer therapeutic strategies
targeting caspases with small molecule drugs or by gene editing
in solid tumors are under development.257

In the context of infection, viruses have evolved a mechanism to
modulate apoptosis by mimicking the host’s regulatory systems.
Examples include human herpesvirus-8 and molluscipoxvirus,
which express FLIP-like inhibitory proteins, coined v-FLIPs, that
mimic host proteins and inhibit proapoptotic signaling by death
receptors.258,259 Similarly to necroptosis, cytomegalovirus (CMV)
has evolved mechanisms to counter apoptotic pathways. Human
CMV expresses vMIA, which inhibits BAX by binding and
sequestering it at the mitochondrial membrane.260,261 Subsequent
studies also found that vMIA can interact with and inhibit
BAK.262,263 Unlike human CMV, mouse CMV expresses two
proteins, each possessing either BAX- or BAK-inhibitory properties.
Mouse CMV-expressed vMIA interacts and blocks BAX,263–266 while
vIBO prevents BAK oligomerization.267 Hence, CMV has mastered
strategies to evade two critical cell death pathways by generating
inhibitors of crucial components of apoptosis and necroptosis.
Although human CMV is known to activate the AIM2 inflamma-
some,268 no evidence that CMV directly prevents pyroptosis,
except for its ability to partially downregulate NLRP3 priming
in vitro, has been reported to date.269

CROSSING LINES OF REGULATED CELL DEATH
Cell death pathways have long been considered to function in
parallel with little or no overlap. However, it is currently clear that
apoptosis, necroptosis, and pyroptosis are tightly connected and
can crossregulate each other.
The critical function of caspase-8 as a mediator of the apoptotic

and necroptotic pathways was one of the earliest-discovered
bridges between different types of cell death. Caspase-8 not only
regulates apoptosis but is also a central component of the
ripoptosome,42 where it represents a crucial switch for the
cleavage of RIPK1 and RIPK3270–272 and one of the TRAF2- or
RIPK1-deubiquitylating enzymes, CYLD.273 In this way, caspase-8
prevents the formation of necrosomes and favors apoptosis over
necroptosis. FADD-mediated activation of caspase-8 downstream
of death receptor activation triggers apoptosis,274–276 while the
absence or pharmacological blockade of caspase-8 drives
necroptosis.277 Interestingly, while caspase-8 seems to play a role
in the stabilization of the ripoptosome, its proteolytic activity is
required to prevent necroptosis.278 Hence, caspase-8 in the DISC
and the ripoptosome is critical for both apoptosis and necroptosis.
Moreover, several studies noted a link between the activation of
the ripoptosome and caspase-1 and the release of IL-1β and IL-18
after bacterial infection.54,55,279 A study by Gurung et al. placed
FADD and caspase-8 upstream of NLRP3 activation, noting that
both molecules contribute to macrophage priming and activation
of caspase-1 and IL-1β maturation.279 The same group then went

on to show that influenza A virus (IAV) induces RIPK3/caspase-8-
dependent cell death through activation of DAI followed by
activation of NLRP3.280 It was then unclear whether the
contributions of RIPK3 and caspase-8 to NLRP3 activation were
mediated only by a priming effect. Indeed, the potential autocrine
contribution of TNFα or IFN-I signaling induced downstream of
TLR4 or DAI could partially explain these findings. Several studies
have demonstrated that RIPK3 regulates caspase-8 activity and the
subsequent activation of NLRP3 downstream of TLR or TNFR1/
2.92,281–284 These studies showed that in the absence of RIPK3-
ubiquitinating IAPs, stimulation with dsDNA, LPS, or TNFα triggers
RIPK3 to activate caspase-8 in myeloid cells. This event promotes
apoptosis and NLRP3-dependent caspase-1 activation and IL-1β
release. However, in the presence of functional caspase-8, NLRP3
activation and IL-1β release did not require RIPK3 kinase activity or
MLKL activation. More recent data show that under these
conditions, caspase-8 promotes NLRP3 activation by cleaving
GSDMD directly, thereby promoting pyroptosis downstream of
TNF and providing protection against infection (e.g., Yersinia
infection) in vivo.285–287 In the absence of caspase-8, RIPK3 kinase
activity and MLKL are necessary. However, it is still unclear how
MLKL promotes NLRP3 activation in this context. Since active
MLKL induces loss of membrane integrity, similar to GSDMD,
MLKL-dependent K+ efflux may cause NLRP3 activation. Whether
NLRP3 activation contributes to cell death via GSDMD under these
conditions remains to be explored. Strikingly, caspase-8 activation
downstream of the intrinsic apoptosis pathway (i.e., BAX/BAK-
dependent mitochondrial destabilization followed by caspase-3/7
activation) has recently been connected to NLRP3 activation and
the secretion of bioactive IL-1β from macrophages.288 Indeed,
activation of BAX/BAK triggers proteasomal degradation of the
ubiquitin ligase IAP, allowing caspase-8 activation by caspase-3/-7.
Interestingly, although some researchers had already identified
GSDMD and GSDME activation downstream of caspase-8 after
Yersinia infection,285–287 in the context of mitochondrial apoptosis,
NLRP3 activation induced by K+ efflux seemed to be independent
of GSDMD. Instead, apoptotic caspases (i.e., caspase-3/-7) inacti-
vate GSDMD through cleavage at aspartate 88.285,289 Hence, the
exact mechanism by which intrinsic apoptosis triggers NLRP3
activation remains unclear. The last piece of the puzzle was placed
with the recent discovery that in macrophages, pannexin-1
(PANX1) channels induced during apoptosis drive NLRP3
activation.290,291 Indeed, downstream of intrinsic and extrinsic
apoptosis, RIPK3-dependent activation of caspase-3 and subse-
quent maturation of PANX1 trigger K+ efflux, which in turn
activates NLRP3 and the release of IL-1β independent of GSDMD
or GSDME. However, PANX1 channels are dispensable for
canonical and noncanonical inflammasome activation (in which
GSDMD is critical). Another link between pyroptosis and apoptosis
was recently identified by Tsuchiya et al.292 In macrophages, in the
absence of GSDMD, activation of caspase-1 redirects cell fate
toward caspase-3-, caspase-9- and BID-dependent apoptosis. This
finding could explain the only partial reduction in Gsdmd−/−

macrophage death described by Kayagaki et al.120 How caspase-1
triggers the activation of caspase-3 and further apoptosis remains
to be clarified.
As another example of an immune response connecting

different cell death pathways, RNA viruses induce NLRP3
activation and the subsequent release of IL-1β in a RIPK1/RIPK3-
dependent and MLKL-independent manner.293 Viral infection
triggers RIPK1/RIPK3-mediated phosphorylation of DRP1, resulting
in mitochondrial damage and NLRP3 activation, presumably
through the release of mitochondrial ROS. In light of the new
data discussed here, RNA virus-induced NLRP3 activation could be
the result of caspase-8 engagement downstream of mitochondrial
destabilization and the subsequent activation of caspase-3/-7. This
hypothesis is worth investigating. Other earlier studies showed
that NLRP3 is activated by intracellular detection of bacterial or
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viral RNA and by synthetic nucleoside mimetics.100,101 Whether
the RIPK1/RIPK3/MLKL pathway was involved in these experiments
remains to be evaluated, taking into consideration a potential role
for IFN-I signaling induction.
Further blurring the lines between cell death pathways, TAK1,

also found in complex with RIPK1, FADD, and caspase-8 down-
stream of TNFR or TLR activation, has recently emerged as another
prosurvival regulator of cell death. In macrophages, TAK1 deletion
was shown to induce caspase-8-dependent cleavage of GSDMD
after stimulation with TNFα or TLR ligands.294 Furthermore, a new
concept has emerged where several players in different cell death
pathways merge into a single complex called the PANoptosome.
The first evidence of this oligomeric structure came from the work
of the Kanneganti laboratory.295,296 This group first reported that
deficiency or blockade of TAK1 induces NLRP3/RIPK1-dependent
cell death. Interestingly, TAK1 blockade triggers proinflammatory
pathways reminiscent of those induced by the priming step
necessary for NLRP3 activation.295 Treatment of cells with TLR
ligands markedly abolishes the requirement for RIPK1 kinase
activity prior to activation of caspase-1 and other apoptotic or
necroptotic caspases (e.g., caspase-3 and caspase-8).296 Expression
of a kinase-dead version of RIPK1 was necessary and sufficient for
activation of caspase-1 and cell death after 12 h of stimulation.
Kinetic analysis revealed activation of MLKL in a RIPK3/caspase-8-
dependent manner as early as 2 h after TLR or TNFR stimulation. In
the context of previous studies by Lawlor et al.,92,283,288 early
induction of apoptosis or necroptosis could explain the down-
stream activation of NLRP3/caspase-1 and the induction of
pyroptosis. Further work from the same group proposed that
several microbes can induce cell death via PANoptosis.297 Deletion
of several important regulators of cell death pathways has shown
that Salmonella preferentially induces cell death through pyr-
optosis, while IAV triggers cell death through RIPK3/caspase-8-
dependent necroptosis. Listeria and VSV seem to induce cell death
equally through pyroptosis and necroptosis, as only complete
knockdown of caspase-1/11, RIPK3 and caspase-8 rescues cell

survival. New data also implicate caspase-6 in the activation of
DAI/RIPK3/MLKL followed by NLRP3/caspase-1 in macrophages
infected with IAV.298 It is still unclear whether all pathways are
triggered in parallel inside infected cells under these conditions or
whether released cytokines and other mediators released from
infected cells trigger a different cell death pathway in bystander
cells. Analysis of the different cell death pathways engaged on a
single-cell level could help deconvolute this issue.
Supporting the role of caspase-8 in pyroptosis, new data link

caspase-8 to the formation of ASC specks in embryonic intestinal
tissue.299 Using a combination of transgenic mice with deletion of
cell death regulators, Newton and colleagues demonstrated that
inactivation of procaspase-8 (i.e., through the loss-of-function
C362A mutation) seeds the formation of ASC specks, thus
promoting caspase-1-dependent cleavage of GSDMD and
pyroptosis.
A recent study by Gitlin et al. added another key to caspase-8’s

toolbox.300 In macrophages, downstream of TRIF-dependent TLRs
(i.e., TLR3 and TLR4), activated caspase-8 cleaves the IFN-induced
suppressor of cytokine production N4BP1, amplifying cytokine
production and release. MyD88-dependent TLRs fail to target
N4BP1, resulting in a reduced cytokine response. However,
engagement of TNFR1 by TNFα followed by caspase-8 activation
and N4BP1 cleavage allows TRIF-independent TLRs to induce
cytokine production. Since coactivation of TLRs and TNFR can
likely occur during pathogen infection in vivo, engagement of
TNFR induces cleavage of N4BP1 by caspase-8 to allow TRIF-
independent TLRs to enhance cytokine responses. Hence, caspase-
8 is a critical node in signal integration by which TNF permits
cytokine and chemokine production downstream of TRIF-
independent TLRs.
Hence, caspase-8 is a central regulator of cell death, acting as a

cellular compass to promote apoptosis, necroptosis, or pyroptosis
depending on its posttranslational state and the cell type (Fig. 4).
Regulators other than caspase-8 have emerged as gatekeepers
between cell death pathways. For example, GBP1 was recently

Fig. 4 Crossing lines of programmed cell death. The different cell fates are balanced by an intricate game between pro- and antisurvival
factors in which caspase-8 seems to be the central referee
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proposed to act as a microbe-specific switch enabling recognition
of either Toxoplasma gondii DNA, inducing apoptosis through
AIM2, or Salmonella LPS, instead promoting pyroptosis via
caspase-4.301,302

Collectively, these data emphasize the tight crossregulation
that exists between apoptosis, necroptosis, and pyroptosis and
indicate the presence of bridges between the pathways to
coordinate cell death should one pathway become compro-
mised. These data also highlight that while apoptosis is less
immunogenic than necroptosis or pyroptosis, it enables the
release of proinflammatory signaling molecules such as IL-1β
under specific conditions. Hence, cell death pathways are not
independent entities acting in parallel. Instead, they must be
considered flexible molecular tools generating a wide range of
outcomes, emitting signals with a full spectrum of anti- or
proinflammatory components. Rather than a punctual event, the
nature of the “death signal” is likely to result from the tipping of
a delicate balance between pro- and antideath signals. At that
point, the state of the cell, especially the status of switch
regulators such as caspase-8, determines the pathway to be
executed.

CONCLUSION/PERSPECTIVES
As summarized herein, many important discoveries have recently
been made in the field of cell death. Several new players have
been identified that often underline new connections bridging
distinct cell death pathways. Cell death, as it turns out, is a very
intricate game where distinct central players have the power to tip
a fragile balance from life to death and from pro- to anti-
inflammatory signals for the cell environment. The next years will
certainly be exciting in the field as more light is shed on the
complex regulatory mechanism that governs cell death. These
years will also be a time during which new drugs are developed,
enabling these discoveries to be utilized to either enhance (e.g.,
cancer treatments) or prevent (e.g., treatment of inflammatory
diseases) cell death.
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