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ABSTRACT 

 

Charcot-Leyden crystals (CLCs) are Galectin-10 protein crystals that can form after 

eosinophils degranule. CLCs can appear and persist in tissues from patients with eosinophilic 

disorders, such as asthma, allergic reactions, fungal, and helminthic infections. Despite 

abundant reports of their occurrence in human disease, the inflammatory potential of CLCs 

has remained unknown. Here we show that CLCs induce IL-1β release upon their uptake by 

primary human macrophages in vitro, and that they induce inflammation in vivo in mouse 

models of acute peritonitis and bronchitis. CLC-induced IL-1β was dependent on NLRP3 and 

caspase-1, and their instillation in inflammasome reporter mice promoted the assembly of 

ASC complexes and IL-1β secretion in the lungs. Our findings reveal that CLCs are 

recognized by the NLRP3 inflammasome, which may sustain inflammation that follows 

eosinophilic inflammatory processes.  
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INTRODUCTION 

 Modifications in the physicochemical properties of certain proteins, lipids, or 

metabolites can result in phase transition leading to crystal formation or non-physiological 

aggregation (Franklin et al., 2016; Mulay and Anders, 2016). Crystals can arise in tissues 

when endogenous material, such as minerals, cholesterol, and uric acid deposit. They can also 

be introduced from exogenous sources by inhalation (silica, asbestos, airborne particulate 

matter), or via injections (medical nanomaterials, vaccine adjuvants) (Franklin et al., 2016). 

Crystalline or aggregated materials are sensed by innate immune cells, which are equipped 

with germ-line encoded pattern recognition signaling receptors (PRRs). Innate immune cells 

survey tissues and remove accumulated extracellular material, pathogens, and residues of 

cellular demise. Sensing of crystals induces potent inflammatory responses, a property that 

has been exploited for adjuvanticity in vaccine formulations. Whereas several membrane-

bound PRRs are involved in the recognition and uptake of crystals (Tsugita et al., 2017; 

Sheedy et al., 2013), the cytosolic PRR NLRP3 senses excessively phagocytosed crystals. 

NLRP3 activation causes the formation of an inflammasome that leads to activation and 

release of pro-inflammatory cytokine interleukin-1 beta (IL-1β) (Hornung et al., 2008; 

Duewell et al., 2010; Masters et al., 2010; Halle et al., 2008; Martinon et al., 2006b; Dostert et 

al., 2008). IL-1β plays important roles in crystal-driven inflammatory diseases and, together 

with NLRP3, represents a promising therapeutic target for a range of crystal-mediated 

diseases (Franklin et al., 2016; Mulay and Anders, 2016). 

Inflammation occurs not only as a consequence of crystal buildup, but it can itself 

promote crystallization. During inflammation immune cells are recruited to the affected 

tissue. Among them, eosinophils and basophils play important roles in allergic reactions, 

fungal and helminthic infections, and in the regulation of a variety of autoimmune disorders. 

These cells can expel highly cytotoxic proteins from their secretory granules, which mediate 

the marked physiological changes associated with eosinophil and basophil inflammation. A 

predominant protein present in eosinophilic and basophilic granules is Galectin-10 

(LGASL10), also known as Charcot-leyden protein (Golightly et al., 1992; Archer and 

Blackwood, 1965). Galectin-10 can cluster and form Charcot-Leyden Crystals (CLCs), which 

are colorless elongated hexagonal bipyramidal structures that can reach up to 50 μm in length. 

Since their first report, more than 160 years ago, CLCs have been shown to spontaneously 

form in vitro from lysates of eosinophils (Weller et al., 1980) and basophils (Ackerman et al., 

1982), and have been found to accumulate in tissues from patients with asthma (Dor et al., 

1984), fungal allergic reactions (el-Hashimi, 1971; Katzenstein et al., 1983; DeShazo et al., 
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1997), helminthic infections (Kaplan et al., 2001), and myeloid leukemia (Nashiro et al., 

2016; van de Kerkhof et al., 2015; Manny and Ellis, 2012). Despite abundant reports showing 

the appearance of CLCs in tissues from patients with eosinophilic disorders, these crystals are 

still regarded as inert remains of eosinophil activity, with unrecognized immune function. 

Advances in this field have been hindered by the lack of a suitable animal model to study 

CLC formation in vivo. Mice lack the gene LGASL10, which encodes for Galectin-10. 

Therefore, it remains to be demonstrated whether CLCs are inflammatory in vitro and in vivo.  

Here we show that CLCs are promptly phagocytosed in vitro by human macrophages, 

and this leads to the release of the pro-inflammatory cytokine IL-1β. CLC-induced IL-1β in 

macrophages occurred through the activation of caspase-1 following the assembly of the 

NLRP3 inflammasome. Furthermore, we show that CLCs promoted inflammation in vivo, 

characterized by neutrophil infiltration, phagocytosis of the crystals, and IL-1β release. 

Additionally, CLCs induced the assembly of inflammasomes (ASC specks) in vivo after their 

instillation into the lungs of ASC-mCitrine transgenic reporter mice. 

Our findings uncover immune stimulatory features of CLCs and shed new light into 

the likely consequences caused by inflammatory sequelae that follow eosinophil infiltration in 

tissues. 

 

RESULTS AND DISCUSSION 

Production and characterization of Charcot-Leyden crystals 

 To investigate the inflammatory potential of CLCs, we first produced CLCs from 

whole cell lysates of AML14.3D10 cells, a  subclone of the AML14 cell line that was 

established from a 68-year-old patient with FAB M2 acute myeloid leukemia (Baumann and 

Paul, 1998). Both the parental AML14 cell line and the AML14.3D10 subclone are 

established tools for the study of eosinophil biology (Paul et al., 1994).  We produced CLCs 

in vitro by incubating pre-cleared lysates of AML14.3D10 cells at 4 oC for 16 hours (Fig. 1a, 

and Fig. S1a) as previously described (Ackerman et al., 1980). The resulting crystals 

displayed the hexagonal bipyramidal morphology characteristic of CLCs (Fig. 1b). 

Coomassie Brilliant Blue staining of a gel loaded with SDS-denatured crystals revealed that 

CLC preparations contained mainly one protein (Fig. 1c, and Fig. S1a), and immunoblotting 

with specific anti-Galecin-10 mAb showed that the CLC preparations were composed of 

Galectin-10 (Fig. 1d and Fig. S1a). 

 

Phagocytosis of CLCs leads to IL-1β secretion by human macrophages 
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We next generated primary human monocyte-derived macrophages (hMDMs) 

differentiated from CD14+ monocytes isolated from the peripheral blood mononuclear cells 

(PBMCs) from buffy coats of healthy donors. These cells were primed with LPS and exposed 

to CLCs and their phagocytic potential against the CLCs was assessed by microscopy. We 

noticed that hMDMs promptly engulfed CLCs of variable sizes (Fig. 2a, and Movie S1).  

 The pro-inflammatory cytokine IL-1β is a key driver of crystal-induced inflammation 

in several chronic inflammatory diseases (Hornung et al., 2008; Duewell et al., 2010; Masters 

et al., 2010; Halle et al., 2008; Martinon et al., 2006b; Dostert et al., 2008). We thus 

investigated whether phagocytosis of CLCs resulted in IL-1β release by hMDMs. We found 

that, similar to the well-established inflammasome activators silica and cholesterol crystals, 

exposure of LPS-primed hMDMs to CLCs resulted in a dose- and time-dependent release of 

IL-1β from these cells (Fig. 2b-c). Similar to reports using other crystals, LPS priming was 

required for the release of IL-1β by in vitro CLC-stimulated hMDMs (Table S1). Importantly, 

phagocytosis was required for CLCs-induced IL-1β release by hMDMs in vitro, as treatment 

of cells with the actin polymerization inhibitor cytochalasin D impaired their phagocytic 

activity and diminished their capacity to release IL-1β in response to CLCs stimulation (Fig. 

2d-e). As expected, cytochalasin D inhibited the IL-1β release mediated by silica crystals, 

while the response to nigericin, a soluble inflammasome activator that acts as an antiporter of 

H+ and K+, remained unaffected. 

 

CLCs-induced IL-1β release in vitro depends on NLRP3 activation 

 Phagocytosis of crystalline material and insoluble protein aggregates can ultimately 

result in lysosomal damage and the release of lysosomal content into the cell cytosol. 

Lysosomal damage can activate NLRP3, which then recruits the adapter protein ASC and 

caspase-1, a protein complex that enables maturation of pro-IL-1β by caspase-1-mediated 

proteolysis (Hornung et al., 2008). To investigate whether lysosomal damage is involved in 

CLCs-induced inflammasome activation, we pre-treated hMDMs with CA-074 Me, a 

compound that inhibits lysosomal damage-mediated NLRP3 activation (Hornung et al., 

2008). Indeed, CA-074 Me inhibition blocked CLC-induced IL-1β release in a dose-

dependent manner (Fig. 2f), suggesting that lysosomal damage is a likely mechanism by 

which CLCs can induce IL-1β secretion by macrophages. Inflammasome assembly can be 

visualized by ASC transition from a diffused cytosolic localization into a dot-like structure 

called the ASC speck (Stutz et al., 2013; Hoss et al., 2017). We therefore performed 

immunofluorescence staining of ASC in LPS-primed hMDMs stimulated with CLCs. Using 
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fluorochrome-conjugated anti-ASC antibodies, or isotype matched fluorochrome-conjugated 

IgGs, we revealed the formation of ASC specks in hMDMs that phagocytosed CLCs in vitro 

(Fig. 3a).  

In line with a role for the NLRP3 inflammasome in the intracellular sensing of CLCs, 

specific inhibition of NLRP3 and caspase-1 with the compounds CRID3 (Coll et al., 2015) 

and VX-765, respectively, ablated CLC-induced IL-1β release by hMDMs (Fig. 3b-c). In 

contrast, the response to NAIP-NLRC4 inflammasome activation, tested through the delivery 

of the needle protein of the Salmonella pathogenicity island 1 type III secretion system (PrgI) 

into the cytosol, was not affected by the NLRP3 inhibitor CRID3, demonstrating specificity. 

These findings indicate that, similar to silica (Hornung et al., 2008), uric acid (Martinon et al., 

2006a), and cholesterol crystals (Duewell et al., 2010), CLCs induce IL-1β activation and 

release from hMDMs by activating the NLRP3 inflammasome. 

 

 CLCs induce inflammasome activation in vivo 

 One of the main functions of IL-1 family cytokines is to induce the recruitment of 

immune cells, such as neutrophils and monocytes, which limits the spread of infection and 

initiates tissue repair (Dinarello, 2009). Inflammasome activation in vivo is characterized by 

strong neutrophil infiltration in tissues (Satoh et al., 2013), and tissue neutrophilia is a 

hallmark of IL-1-driven autoinflammatory diseases (Bonar et al., 2012; Broderick et al., 

2015). We therefore used a well-established mouse peritonitis model (Yanagida et al., 2013; 

Duewell et al., 2010; Hornung et al., 2008) to assess whether CLCs also promote neutrophil 

infiltration, which could indicate that inflammasomes are activated in vivo. We injected wild-

type C57BL/6 mice intraperitoneally with PBS or with CLCs. Silica crystals were used as a 

positive control, as these crystals were reported to cause IL-1R-dependent neutrophil 

infiltration in vivo (Hornung et al., 2008; Kuroda et al., 2011). CLCs caused peritonitis 

characterized by massive infiltration of neutrophils (CD11b+, Ly6G+, Ly6Cint) and 

inflammatory monocytes (CD11b+, Ly6G-, Ly6C+) (Fig. 4a-b) into the peritoneal cavity. Of 

note, imaging of cells recovered from the PELF revealed the presence of neutrophils and 

monocytes that had phagocytosed CLCs (Fig. 4c and Fig. S2), confirming that CLCs are also 

phagocytosed in vivo. 

Although peritoneal injection of CLCs is useful to assess crystal-induced 

inflammation in vivo, it does not represent a physiologically relevant site for CLC formation. 

CLCs were frequently reported in the airways and sputum of patients with a variety of highly 

prevalent respiratory diseases, such as asthma (Dor et al., 1984). To confirm whether CLCs 
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induce inflammasome activation in vivo in the lung and to locally associate CLCs uptake with 

inflammasome activation, we performed intratracheal instillation of CLCs into the lungs of 

ASC-mCitrine transgenic reporter mice (Tzeng et al., 2016). ASC-mCitrine mice were 

instilled with either PBS, CLCs, or silica crystals. Six hours after instillation, we assessed the 

infiltration of neutrophils, formation of mCitrine-fluorescent ASC specks, and production of 

pro-inflammatory cytokines in the bronchoalveolar lavage fluids (BALF). CLC-instilled mice 

displayed large numbers of neutrophils in their BALFs (Fig. 5a). Very few or no neutrophils 

(CD11b+, Ly6G+, Ly6Cint ) were found in the BALFs of mice instilled with PBS. In line with 

the observations from the peritonitis model, we found that cells recovered in BALF contained 

phagocytosed CLCs. This was accompanied with the formation of ASC-mCitrine specks, 

which was further validated with staining of ASC-mCitrine specks with an Alexa-647 directly 

conjugated anti-ASC antibody (Fig. 5b and S3). Measurements of IL1-β present in the 

BALFs showed a marked increase of this pro-inflammatory cytokine six hours after injection 

with silica crystals or CLCs, compared to PBS injected animals. The levels of TNF, an 

inflammasome-independent pro-inflammatory cytokine, were also elevated in the BALFs of 

mice treated with CLCs (Fig. 5c). 

Altogether, our data show that CLCs induce inflammasome activation in vivo and 

suggest that their accumulation in tissues might be an important driver for chronic tissue 

inflammation following eosinophil infiltration. 

 

Concluding remarks 

 Our study identifies a previously unappreciated inflammatory capacity of CLCs and 

opens new avenues to consider the immunogenicity and potential relevance of these crystals 

for common chronic immunological diseases, such as asthma.  

CLCs are found in the sputum of asthma patients with eosinophilia(Dor et al., 1984; 

Sakula, 1986). Although asthma patients can display heterogeneous phenotypes, an important 

molecular mechanism of asthma is type 2 inflammation, which is characterized by an increase 

in IgE titers, the recruitment of eosinophils, and the predominance of TH2 cells, which secrete 

IL-4, IL-5 and IL-13 (Fahy, 2015). Type 2 immunity can also influence the expression of 

classical pro-inflammatory cytokines, such as IL-1β, that can assist in the development of 

chronic inflammation. In line with these observations, endogenous danger associated 

molecular patterns (DAMPs), including uric acid crystals, traditionally known as the cause of 

inflammation in gout, are strong adjuvants for Th2 immunity (Kool et al., 2008; 2011).  

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/252957doi: bioRxiv preprint first posted online Jan. 24, 2018; 

http://dx.doi.org/10.1101/252957
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

Indeed, IL-1β levels have been shown to be increased in asthma, and the number of 

macrophages expressing IL-1β in the bronchial epithelium of asthma patients is higher in 

comparison with control subjects (Sousa et al., 1996). Our findings show that CLCs, which 

are commonly found in fluids and tissues of patients with eosinophilia, induce strong release 

of the highly pro-inflammatory cytokine IL-1β. This finding, together with the report of CLCs 

found in the phagosomes of macrophages in vivo (Lao et al., 1998; Dvorak et al., 1990), 

suggests that the uptake of CLCs by macrophages and the subsequent release of IL-1β can be 

one of the signals that perpetuate and exacerbate inflammation in the tissues of patients with 

eosinophilic disorders. On that note, IL-1β has been reported as a critical cytokine for the 

development of a Th2/Th17-predominant subtype in asthma patients (Liu et al., 2017). 

Th2/Th17-predominant asthma patients present dual-positive Th2/Th17 cells in their BALFs 

and exhibit a severe form of asthma. Moreover, these patients show increased eosinophil 

counts in their BALFs. Whether CLCs, which are a hallmark of eosinophilic diseases, are 

present in the BALFs of Th2/Th17-predominant asthma patients, and whether their 

recognition by alveolar macrophages are the cause of the increased levels of IL-1β in these 

patients is a matter of further research. In this scenario, inhibition of CLCs formation, 

engulfment, or effects in IL-1β release –potentially by blocking NLRP3 activity—could 

benefit patients with asthma. 

The results presented in this study expand our current understanding on how protein 

crystallization contributes to immunogenicity and highlight the need to consider novel 

therapeutic strategies that neutralize protein crystallization lingering from the activity of 

granulocytes. 
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EXPERIMENTAL PROCEDURES 

 

Reagents 

Ultrapure Lipopolysaccharide (LPS) from E. Coli 0111:B4 and nigericin were from 

Invitrogen, DRAQ5 was from eBiosciences. Cytochalasin D was purchased from Sigma and 

CA-074 Me from Enzo. The caspase-1 inhibitor Belnacasan (VX-765) was from 

Selleckchem. The NLRP3 specific inhibitor CRID3, (also known as Cytokine release 

inhibitory drug 3, or MCC950) was purchased from Sigma-Aldrich. HTRF kits for human IL-

1β and TNF-α were from Cisbio Bioassays and were used according to manufacturer’s 

instructions. Cholesterol crystals were prepared as previously described(Zimmer et al., 2016). 

Briefly crystals were prepared from a 2 mg/ml cholesterol solution in 1-propanol. 

Crystallization was induced by addition of 1.5 volumes of endotoxin-free water. Crystals were 

dried and resuspended in sterile PBS.  

 

Mice 

C57BL/6 mice were acquired from The Jackson Laboratory (Stock No. 000664). C57BL/6 

ASC-mCtrine transgenic mice (B6.Cg-Gt(ROSA)26Sortm1.1(CAG-Pycard/mCitrine*,-CD2*)Dtg/J) were 

acquired from The Jackson Laboratory (Stock No. 030744). Mice were housed in pathogen-

free conditions and were handled in accordance with the Guide for the Care and Use of 

Laboratory Animals of the US National Institutes of Health and the Institutional Animal Care 

and Use Committee (IACUC) of the University of Massachusetts Medical School. C57BL/6 

ASC-mCtrine transgenic mice (B6.Cg-Gt(ROSA)26Sortm1.1(CAG-Pycard/mCitrine*,-CD2*)Dtg/J) were 

acquired from The Jackson Laboratory (Stock No. 030744). 

 

Cell lines 

The AML 14.3D10 cell line was kindly gifted from Meghan Sheehan, Cassandra C. Paul, and 

Michael A. Baumann, from the Wright State University (WSU) Wright State University 3640 

Colonel Glenn Highway, 304 University Hall, Dayton, OH 45435. AML14.3D10 cells were 

cultured in RPMI medium 1640 (Gibco) containing 10% fetal bovine serum (FBS) 

(Invitrogen), 1% penicillin/streptomycin, 1x GlutaMAX and 1x sodium pyruvate (both from 

Life Technologies) (complete medium). 

 

Human primary cells 
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Buffy coats from healthy donors were obtained according to protocols accepted by the 

institutional review board at the University of Bonn (local ethics votes Lfd. Nr. 075/14). 

Primary human macrophages were obtained through differentiation of CD14+ monocytes in a 

medium complemented with 500 U/mL rhGM-CSF (Immunotools) for 3 days. In brief, 

human peripheral blood mononuclear cells (PBMCs) were obtained from buffy coats of 

healthy donors by density gradient centrifugation in Ficoll-Paque PLUS (GE Healthcare). 

PBMCs were incubated at 4 oC with magnetic microbeads conjugated to monoclonal anti-

human CD14 antibodies (Miltenyi Biotec). CD14+ monocytes were thereby magnetically 

labeled and isolated using a MACS column placed in a magnetic field as indicated by 

manufacturer (Miltenyi Biotec). Monocytes-derived macrophages were cultivated in complete 

medium during all experiments. 

 

Preparation of CLCs 

CLCs were isolated following an adapted version of the protocol published elsewhere 

(Ackerman JI 1980). All steps were carried out at 4 oC to avoid protein degradation and under 

sterile conditions using a class II biosafety cabinet and sterile reagents. At least 600 x106 

AML14.3D10 cells were washed twice with phosphate saline buffer (PBS) (Life 

Technologies) and resuspended in hypotonic (0.15% NaCl) PBS complemented with 

cOmplete protease inhibitor cocktail (Roche) (lysis buffer). For every mL of cell pellet, 1 mL 

of lysis buffer was used for resuspension of the cells. Resuspended cells were then lysed at 4 
oC using a Dounce tissue grinder. 30 strokes were necessary for lysing >90% of the cells, 

according to inclusion of trypan blue stain. DNA and big membranes were removed by 

centrifugation of the lysates at 1,000 x g for 10 minutes at 4 oC. The pellets were resuspended 

in 500 μL of lysis buffer and the suspension was again centrifuged at 1,000 x g for 10 minutes 

at 4 oC to recover any soluble protein that could be trapped within the pellet of membranes. 

The supernatants from both centrifugation steps were combined and further centrifuged at 

40,000 x g for 20 minutes at 4 oC to remove organelle membranes and cellular debris. The 

pellets were discarded and supernatants were centrifuged again at 40,000 x g for 30 minutes at 

4 oC. The supernatants were combined and its volume was reduced to ~1mL by centrifugation 

at 3,200 x g in an Amicon Ultra-15 centrifugal filter with a membrane with NMWL of 10 kDa 

(EMD Millipore). This cleared and concentrated protein lysate already contained CLCs in 

suspension with rest of membranes and protein precipitates when it was observed under the 

microscope. CLCs were separated by centrifugation at 750 x g for 5 minutes at 4 oC. 

Supernatants were kept for 16 hours at 4 oC, and they were later on examined for the 
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existence further CLCs. This second set of CLCs was separated by centrifugation at 750 x g 

for 5 minutes at 4 oC and mixed with the previous set. Combined CLCs were resuspended in 

cold PBS and thoroughly washed (a minimum of 6 times) until the CLCs were mostly free of 

contaminants when observing under the microscope. After all the washing steps, CLCs were 

counted and diluted with complete medium previous use for stimulation of macrophages. 

 

Protein gels and Western blot 

Protein-enriched samples during the process of CLCs generation were mixed with NuPAGE® 

LDS Sample Buffer (4X) and with NuPAGE® Sample Reducing Agent (10X) (both from 

ThermoFischer Scientific) following to heating at 85 oC for 10 minutes to denaturalize and 

reduce all the proteins present in the samples. 

 

Denaturalized and reduced proteins were separated in a NuPAGE 12% Bis-Tris protein gel 

(ThermoFischer Scientific) under electrophoretic conditions in MES buffer. After 

electrophoresis, proteins in the gel were stained with Coomassie Brilliant Blue R-250 dye 

(ThermoFischer Scientific) for ten minutes. Gels were destained in destaining solution (15% 

isopropanol + 10% acetone in water) for 16 hours. Alternatively, proteins in the gel were 

transferred into an Immobilon-FL PVDF membrane (Millipore). Nonspecific binding was 

blocked with 3% BSA in Tris-buffered saline (TBS) for 1 h, followed by overnight incubation 

with a rabbit monoclonal antibody directed against human Galectin-10 (EPR11197Abcam, 

dilution 1:10000) in 3% BSA in TBS with 0.1% Tween-20 (TBS-T). Membranes were 

washed three times in TBS-T and incubated for 2 hours with an IRDye 680RD Donkey anti-

Rabbit antibody (Licor) in TBS-T. Membranes were washed two times with TBS-T and a last 

time with TBS before measuring fluorescent signal in an Odissey infrared imager model 

9120. 

 

Immunocytochemistry 

Cells were fixed in PBS containing 4% formaldehyde methanol free (Thermo Scientific) for 

15 minutes at room temperature. After fixation, membranes were stained with wheat germ 

agglutinin (WGA)-Alexa Fluor 555 (Invitrogen) at 5 μg/mL in PBS for 10 minutes at room 

temperature. Fixed cells were incubated for 1 hour at room temperature with PBS containing 

10% goat serum, 1% FBS, 0.5% Triton X-100 (blocking/permeabilising buffer), and then 

incubated overnight at 4 oC with 0.1 µg/mL of mouse anti-ASC monoclonal antibody (clone 

HASC-71, Biolegend) directly labeled with AF647 or its respective isotype control, also 
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labeled with AF647. Cells were washed three times with blocking/permeabilising buffer. 

Nuclei were stained with DRAQ5 (1:5,000, Thermo Fischer).  

 

Microscopy 

Confocal microscopy was combined with fluorescence microscopy using a Leica TCS SP5 

SMD confocal system (Leica Microsystems, Wetzlar, Germany). Images were acquired using 

a 63X objective, with a numerical aperture of 1.2, and analysed using the Volocity 6.01 

software (PerkinElmer, Waltham, Massachusetts, U.S.A.). For better visibility, in some 

instances, brightness and contrast were adjusted and all images within one experiment and 

applied equally to isotype controls and staining conditions. 

 

In vivo peritoneal injection of CLCs 

C57BL/6 mice were exposed to crystals by the peritoneal injection of 100 uL of PBS 

containing either 1 x106 CLCs, 100 μg of silica crystals, or nothing. After 6 hours, mice were 

euthanized and 6 mL of lavage solution (RPMI + 3 mM EDTA) were injected into the 

peritoneum of mice as described elsewhere (Yanagida et al., 2013). After massaging the 

distended peritoneal cavity, the peritoneal lavage fluid (PELF) was recovered and separated 

into a cellular fraction and a liquid fraction by centrifugation at 350 x g at 4 oC during 5 

minutes. These cells were assayed in flow cytometry to determine neutrophil recruitment and 

also observed under the microscope (Leica SP5) to identify cells that have phagocytosed 

CLCs.  

 

Intratracheal instillation of crystals  

C57BL/6 ASC-mCitrine mice were instilled at a dose of 1 mg of silica crystals, or 3.5 x 106 

CLCs in 60 µL of PBS. The sample suspension was intratracheally instilled once to isoflurane 

anesthetized animals by a syringe through a catheter inserted into the airway. A control group 

was instilled with PBS alone. Mice were sacrified 6 hours after instillation, and 3 mL of 

bronchoalveolar lavage fluid was collected to determine the total cell count, neutrophil 

(7AAD-, CD11b+, Ly6G+) counts, and cytokine levels by HTRF. 

 

Neutrophil recruitment assays 

Cells recovered in the PELF or BALF were resuspended in 2 mL of staining solution (PBS + 

2% FCS) and counted with a hemocytometer. For neutrophils and monocytes identification, 

250 uL of cells were stained with fluorochrome-labelled antibodies against CD11b (clone 
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M1/70, Biolegend), Ly-6G (clone 1A8, BD Biosciences) and Ly-6C (clone ER-MP20, Bio-

Rad), or their respective fluorochrome-labelled isotype Ig. After staining with 7AAD (BD 

Biosciences) for exclusion of dead cells, cells were analysed in a MACSQuant Analyzer 10 

flow cytometer. 

 

Cytokine levels measurement in the BALF 

The liquid fraction of the BALF was concentrated using Amicon Ultra-2 mL 10K centrifugal 

filters. The amounts of mouse IL-1β and mouse TNF-α in the concentrated BALF were 

quantified using a HTRF assay kit (Cisbio Bioassays) and normalized to the volume of 

concentrated lavage. 

 

Statistical analysis 

Unless otherwise stated, all data is pooled from a minimum of 3 independent experiments 

carried out on macrophages from different donors. For clearance, individual experiments are 

depicted as symbols in graphs. Each symbol represents average values from technical 

triplicates from an individual donor. Data are graphed as mean, error bars show standard 

deviation (SD, when pooled from 2 independent experiments), or error of mean (SEM, when 

pooled from 3 or more independent experiments). The significance of differences between 

groups was evaluated by one-way analysis of variance (ANOVA) with repeated measures 

with Holm-Sidak’s postcomparison test and Geisser-Greenhouse correction. Statistical 

analysis was carried out with Graphpad Prism (version 6.0). Data were considered significant 

when p < 0.05 (*), 0.01 (**), 0.001(***), or 0.0001(****).  
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FIGURE LEGENDS 

Fig. 1 - Production and characterization of CLCs. (a) Schematics of the generation of 

CLCs from AML14.3D10 cells. (b) Wide-field imaging of a representative pure CLC fraction 

generated as shown in a. Scale bars: 400 µm. Insert is a 20X magnification of the area 

outlined at top. (c) Coomassie-stained protein gel and (d) immunoblot for Galectin-10 of 

representative fractions of lysates of AML14.3D10 cells, impure CLCs, and pure CLCs that 

were generated as shown in a. Data is representative of two independent experiments. 

 

Fig. 2 - Phagocytosis of Charcot-Leyden Crystals (CLCs) causes IL-1β secretion by 

human macrophages in vitro. (a) Confocal imaging of LPS-primed (2 ng/mL, for 3 hours) 

primary human macrophages (hMDMs) stimulated with purified CLCs for 6 hours. Plasma 

membrane (red, WGA-AF555), Nuclei (blue, DRAQ5), and CLCs (green, laser reflection). 

Scale bars (4 µm left panel, and 8 µm right panel). Data is from one representative out of 

three independent experiments. (b) HTRF measurement of IL-1β and TNFα from the 

supernatants of hMDMs that were either left untreated, primed with LPS, or primed with LPS 

and stimulated for 6 hours with the indicated ratios of CLCs/macrophage, or the indicated 

concentrations of silica crystals, cholesterol crystals, or for 1.5 hours with nigericin (Nig). 

Each symbol represents the values from hMDMs generated from different donors. Bars 

represent mean and SEM of pooled data from four independent experiments, with different 

CLC preparations. (c) HTRF measurement of IL-1β in hMDMs primed as in a and stimulated 

with CLCs (2 per cell) or silica crystals (100 μg/mL) for the indicated time points. Bars 

represent mean and SD of pooled data from two independent experiments. Each symbol 

represents the values from a different donor. (d) Confocal imaging of LPS-primed 

hMDMs that were pre-treated or not with 5 μΜ of cytochalasin D, 30 minutes before 

incubation with CLCs (2 per cell). (e) HTRF measurement of IL-1β from the supernatants of 

LPS-primed hMDMs that were pre-treated with increasing concentrations of cytochalasin D 

(0, 0.3, 0.6, 1.25, 2.5 or 5 μM). Bars represent mean and SEM of pooled data from three 

independent experiments. Each symbol represents the values from different donors. (f) HTRF 

measurement of IL-1β from the supernatants of LPS-primed hMDMs that were pre-treated 

with increasing concentrations of the cathepsin-B inhibitor CA-074 Me (0, 1.25, 2.5, 5, 10, 15 

μM). Bars represent mean and SEM of pooled data from three independent experiments. Each 

symbol represents the values from different donors. 
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Fig. 3 - CLCs activate the NLRP3 inflammasome in human macrophages. (a) Confocal 

imaging of LPS-primed (2 ng/mL, for 3 hours) hMDMs stimulated with CLCs (2 per 

macrophage) for 6 hours. Cells were fixed and stained with directly Alexa Fluor 647 

(AF647)-labeled anti-ASC antibody, or equal amounts of AF647-IgG isotype control mAbs. 

Plasma membrane (red, WGA-AF555), nucleus (deep blue, Hoechst 34580), ASC (green, 

AF647), and CLCs (light blue, laser reflection). Data is representative of two independent 

experiments. (b) HTRF measurement of IL-1β in LPS-primed (2 ng/mL, for 3 hours) human 

macrophages that were left untreated, or further stimulated with CLCs (2 per macrophage, 6 

hours), silica crystals (100 μg/mL, 6 hours), cholesterol crystals (250 μg/mL, 6 hours), 

nigericin (10 µM, 1.5 hours), or PrgI (2 μg/mL, 3 hours) together with LFn-PA (0.5 μg/mL) 

in the presence of increasing concentrations of the NLRP3 inhibitor CRID3 (0, 2.5, 5, or 10 

μM ), or the caspase-1 inhibitor VX-765 (0, 5, 10, or 30 μM). Bars represent the mean and 

SEM of pooled data from five independent experiments. Each symbol represents values from 

a different donor. The same IL-1β data points for the CLC-treated hMDMs in the absence of 

inhibitors are represented in b and c.  

 

Fig. 4 - CLCs cause neutrophil recruitment in vivo. (a) Flow cytometric analysis showing 

gating strategy and dot-plots used for the quantification of cells in the peritoneal lavage fluids 

(PELF) from C57BL/6 mice 6 hours after intraperitoneal injection of 100 µL of PBS alone, or 

PBS containing 100 µg of silica crystals, or 1x106 CLCs. Numbers in the regions show 

percentages of cells. (b) Flow cytometry quantification of live (7AAD−) neutrophils 

(CD11b+Ly6G+), and inflammatory monocytes (CD11b+Ly6C+Ly6G−) in the PELF from 

mice injected i.p. with PBS, or crystals. Each symbol represents an individual mouse; small 

horizontal lines indicate the mean and SD. (c) Confocal microscopy of the cells in the PELF 

of mice injected with CLCs as described in b. Monocytes (red, Ly6C-AF647), neutrophils 

(green, Ly6G-FITC), CLCs (blue, laser reflection). Arrowheads indicate CLCs, with their 

characteristic morphology, that were phagocytosed by neutrophils and monocytes. Scale bars: 

42 µm left panel, 9 µm middle and right panels.  

 

Fig. 5 – CLCs cause inflammasome activation in the lungs. (a) Flow cytometry 

quantification of live (7AAD−) neutrophils (CD11b+Ly6G+) in the bronchialveolar lavage 

fluid (BALF) of ASC-mCitrine transgenic mice 6 hours after intratracheal administration of 

60 µL of PBS alone, or 60 µL of PBS containing 1 mg of silica crystals, or 3.5x106 CLCs. 

Each symbol represents an individual mouse; small horizontal lines indicate the mean and SD. 
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(b) Confocal imaging of cells present in the BALF of ASC-mCitrine transgenic mice instilled 

intratracheally with CLCs showing the formation of ASC aggregates in their cytosol. ASC 

(Green, mCitrine), Neutrophils (magenta, Ly6G-A647), anti-ASC (red, Anti-ASC A555. (c) 

IL-1β and TNF-α cytokine levels in the BALF of ASC-mCitrine transgenic mice treated as 

described in a. Each symbol represents an individual mouse; small horizontal lines indicate 

the mean and SD. 

 

 

 

Supplementary Figures: 

Table S1: Source data for all the figure panels with human pooled IL-1β data from different 

donors.  

 

Fig. S1: Detailed schematics of CLC production from AML14.3D10 cells with protein 

characterization through all washing steps involved. 30 μg of the resultant AML14.3D10 

lysates after each centrifugation step (see Experimental Procedures), 3 μg of pure CLCs were 

loaded into a protein gel.  

 

Fig. S2: Confocal microscopy of the cells in the PELF of wild-type C57BL/6 mice 6 hours 

after intraperitoneal injection of 100 µL of PBS alone, or PBS containing 1x106 CLCs. Note 

that for the CLC-injected mice, cells show phagocytosed CLCs. 

 

Fig. S3: Confocal imaging of cells present in the BALF of ASC-mCitrine mice instilled 

intratracheally with CLCs or silica crystals showing the formation of ASC aggregates in their 

cytosol. Note that ASC remains mainly evenly distributed in the cytosol of the cells exposed 

to only PBS. ASC (Green, mCitrine), Neutrophils (magenta, Ly6G-A647), anti-ASC (red, 

Anti-ASC A555. 

 

Movie S1: Time-lapse confocal imaging of human macrophages phagocytosing CLCs. 
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