1,021 research outputs found

    Adding run history to CLIPS

    Get PDF
    To debug a C Language Integrated Production System (CLIPS) program, certain 'historical' information about a run is needed. It would be convenient for system builders to have the capability to request such information. We will discuss how historical Rete networks can be used for answering questions that help a system builder detect the cause of an error in a CLIPS program. Moreover, the cost of maintaining a historical Rete network is compared with that for a classical Rete network. We will demonstrate that the cost for assertions is only slightly higher for a historical Rete network. The cost for handling retraction could be significantly higher; however, we will show that by using special data structures that rely on hashing, it is also possible to implement retractions efficiently

    MIRO: A debugging tool for CLIPS incorporating historical Rete networks

    Get PDF
    At the last CLIPS conference, we discussed our ideas for adding a temporal dimension to the Rete network used to implement CLIPS. The resulting historical Rete network could then be used to store 'historical' information about a run of a CLIPS program, to aid in debugging. MIRO, a debugging tool for CLIPS built on top of CLIPS, incorporates such a historical Rete network and uses it to support its prototype question-answering capability. By enabling CLIPS users to directly ask debugging-related questions about the history of a program run, we hope to reduce the amount of single-stepping and program tracing required to debug a CLIPS program. In this paper, we briefly describe MIRO's architecture and implementation, and the current question-types that MIRO supports. These question-types are further illustrated using an example, and the benefits of the debugging tool are discussed. We also present empirical results that measure the run-time and partial storage overhead of MIRO, and discuss how MIRO may also be used to study various efficiency aspects of CLIPS programs

    Antibiotic Resistance among Fusobacterium, Capnocytophaga, and Leptotrichia Species of the Oral Cavity

    Full text link
    PURPOSE Antibiotics play an important role in treating periodontal diseases. Due to the effectiveness of antibiotic therapies, their usage in dentistry has significantly increased. The aim of this study focused on the in-vitro susceptibility of different gram-negative oral bacteria species - which are associated with periodontal diseases (Fusobacterium spp., Capnocytophaga spp. and Leptotrichia buccalis) and have different geographical origins (Asia and Europe) - against antimicrobials that are clinically relevant in dental therapy. MATERIALS AND METHODS A total of 45 strains were tested (29 Fusobacterium spp., 13 Capnocytophaga spp. and 3 L. buccalis) that were either isolated from Chinese patients or were obtained from different strain collections. Their antimicrobial susceptibility to the antimicrobial agents benzylpenicillin, amoxicillin, amoxicillin-clavulanic acid, ciprofloxacin, moxifloxacin, clindamycin, doxycycline, tetracycline and metronidazole was tested using the E-Test. Strains with particular resistance to penicillin, clindamycin and metronidazole were further analysed for resistance genes. RESULTS All tested bacterial isolates were sensitive to amoxicillin, amoxicillin-clavulanic acid, doxycycline and tetracycline, but showed variable sensitivity towards other antibiotics such as benzylpenicillin, ciprofloxacin, moxifloxacin, clindamycin and metronidazole. CONCLUSION The results of the present study suggest that certain periodontal disease-related bacterial strains can be resistant towards antimicrobial agents commonly used in adjuvant periodontal therapy

    Autonomous docking ground demonstration

    Get PDF
    The Autonomous Docking Ground Demonstration is an evaluation of the laser sensor system to support the docking phase (12 ft to contact) when operated in conjunction with the guidance, navigation, and control (GN&C) software. The docking mechanism being used was developed for the Apollo/Soyuz Test Program. This demonstration will be conducted using the 6-DOF Dynamic Test System (DTS). The DTS simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration, the laser sensor will be mounted on the target vehicle and the retroflectors will be on the chase vehicle. This arrangement was chosen to prevent potential damage to the laser. The laser sensor system, GN&C, and 6-DOF DTS will be operated closed-loop. Initial conditions to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved

    Autonomous docking ground demonstration (category 3)

    Get PDF
    The NASA Johnson Space Center (JSC) is involved in the development of an autonomous docking ground demonstration. The demonstration combines the technologies, expertise and facilities of the JSC Tracking and Communications Division (EE), Structures and Mechanics Division (ES), and the Navigation, Guidance and Control Division (EG) and their supporting contractors. The autonomous docking ground demonstration is an evaluation of the capabilities of the laser sensor system to support the docking phase (12ft to contact) when operated in conjunction with the Guidance, Navigation and Control Software. The docking mechanism being used was developed for the Apollo Soyuz Test Program. This demonstration will be conducted using the Six-Degrees of Freedom (6-DOF) Dynamic Test System (DTS). The DTS environment simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration the laser sensor will be mounted on the target vehicle and the retroreflectors on the chase vehicle. This arrangement was used to prevent potential damage to the laser. The sensor system. GN&C and 6-DOF DTS will be operated closed-loop. Initial condition to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved. Detailed description of each of the demonstration components (e.g., Sensor System, GN&C, 6-DOF DTS and supporting computer configuration) including their capabilities and limitations will be discussed. A demonstration architecture drawing and photographs of the test configuration will be presented

    Leaves and fruits preparations of Pistacia lentiscus L.: A review on the ethnopharmacological uses and implications in inflammation and infection

    Get PDF
    There is an increasing interest in revisiting plants for drug discovery, proving scientifically their role as remedies. The aim of this review was to give an overview of the ethnopharmacological uses of Pistacia lentiscus L. (PlL) leaves and fruits, expanding the search for the scientific discovery of their chemistry, anti-inflammatory, antioxidative and antimicrobial activities. PlL is a wild-growing shrub rich in terpenoids and polyphenols, the oil and extracts of which have been widely used against inflammation and infections, and as wound healing agents. The more recurrent components in PlL essential oil (EO) are represented by α-pinene, terpinene, caryophyllene, limonene and myrcene, with high variability in concentration depending on the Mediterranean country. The anti-inflammatory activity of the oil mainly occurs due to the inhibition of pro-inflammatory cytokines and the arachidonic acid cascade. Interestingly, the capacity against COX-2 and LOX indicates PlL EO as a dual inhibitory compound. The high content of polyphenols enriching the extracts provide explanations for the known biological properties of the plant. The protective effect against reactive oxygen species is of wide interest. In particular, their anthocyanins content greatly clarifies their antioxidative capacity. Further, the antimicrobial activity of PlL oil and extracts includes the inhibition of Staphylococcus aureus, Escherichia coli, periodontal bacteria and Candida spp. In conclusion, the relevant scientific properties indicate PlL as a nutraceutical and also as a therapeutic agent against a wide range of diseases based on inflammation and infections

    Transition from initiation to promoter proximal pausing requires the CTD of RNA polymerase II

    Get PDF
    The C-terminal domain (CTD) of mammalian RNA polymerase II consists of 52 repeats of the consensus hepta-peptide YSPTSPS, and links transcription to the processing of pre-mRNA. Although Pol II with a CTD shortened to five repeats (Pol II Δ5) is transcriptionally inactive on chromatin templates, it is not clear whether CTD is required for promoter recognition in vivo. Here, we demonstrate that in the context of chromatin, Pol II Δ5 can bind to the c-myc promoter with the same efficiency as wild type Pol II. However, Pol II Δ5 does not form a stable initiation complex, and does not transcribe promoter proximal sequences. Fluorescence recovery after photobleaching (FRAP) experiments with cells expressing enhanced green fluorescent protein (EGFP)-tagged Δ5 or wildtype Pol II revealed a single, highly mobile Pol II Δ5 fraction whereas wildtype Pol II yielded less mobile fractions. These data suggest that CTD is not required for promoter recognition, but rather for subsequent formation of a stable initiation complex and isomerization to an elongation competent complex
    • …
    corecore