807 research outputs found

    Small Engine Technology (Set) Task 8 Aeroelastic Prediction Methods

    Get PDF
    AlliedSignal Engines, in cooperation with NASA LeRC, completed an evaluation of recently developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk database. Test data for this task includes strain gage, light probe, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated include the quasi 3-D UNSFLO (developed at MIT and modified to include blade motion by AlliedSignal), the 2-D FREPS (developed by NASA LeRC), and the 3-D TURBO-AE (under development at NASA LeRC). Six test cases each where flutter and synchronous vibrations were found to occur were used for evaluation of UNSFLO and FREPS. In addition, one of the flutter cases was evaluated using TURBO-AE. The UNSFLO flutter evaluations were completed for 75 percent radial span and provided good agreement with the experimental test data. Synchronous evaluations were completed for UNSFLO but further enhancement needs to be added to the code before the unsteady pressures can be used to predict forced response vibratory stresses. The FREPS evaluations were hindered as the steady flow solver (SFLOW) was unable to converge to a solution for the transonic flow conditions in the fan blisk. This situation resulted in all FREPS test cases being attempted but no results were obtained during the present program. Currently, AlliedSignal is evaluating integrating FREPS with our existing steady flow solvers to bypass the SFLOW difficulties. ne TURBO-AE steady flow solution provided an excellent match with the AlliedSignal Engines calibrated DAWES 3-D viscous solver. Finally, the TURBO-AE unsteady analyses also matched experimental observations by predicting flutter for the single test case evaluated

    Impaired Cardiac Baroreflex Sensitivity Predicts Response to Renal Sympathetic Denervation in Patients With Resistant Hypertension

    Get PDF
    ObjectivesThis study sought to evaluate cardiac baroreflex sensitivity (BRS) as a predictor of response to renal sympathetic denervation (RDN).BackgroundCatheter-based RDN is a novel treatment option for patients with resistant arterial hypertension. It is assumed that RDN reduces efferent renal and central sympathetic activity.MethodsFifty patients (age 60.3 ± 13.8 years [mean ± SD mean systolic blood pressure (BP) on ambulatory blood pressure monitoring (ABPM) 157 ± 22 mm Hg, despite medication with 5.4 ± 1.4 antihypertensive drugs) underwent RDN. Prior to RDN, a 30-min recording of continuous arterial BP (Finapres; TNO-TPD Biomedical Instrumentation, Amsterdam, the Netherlands) and high-resolution electrocardiography (1.6 kHz in orthogonal XYZ leads) was performed in all patients under standardized conditions. Cardiac BRS was assessed by phase-rectified signal averaging (BRSPRSA) according to previously published technologies. Response to RDN was defined as a reduction of mean systolic BP on ABPM by 10 mm Hg or more at 6 months after RDN.ResultsSix months after RDN, mean systolic BP on ABPM was significantly reduced from 157 ± 22 mm Hg to 149 ± 20 mm Hg (p = 0.003). Twenty-six of the 50 patients (52%) were classified as responders. BRSPRSA was significantly lower in responders than nonresponders (0.16 ± 0.75 ms/mm Hg vs. 1.54 ± 1.73 ms/mm Hg; p < 0.001). Receiver-operator characteristics analysis revealed an area under the curve for prediction of response to RDN by BRSPRSA of 81.2% (95% confidence interval: 70.0% to 90.1%; p < 0.001). On multivariable logistic regression analysis, reduced BRSPRSA was the strongest predictor of response to RDN, which was independent of all other variables tested.ConclusionsImpaired cardiac BRS identifies patients with resistant hypertension who respond to RDN

    Space Shuttle Program: Automatic rendezvous, proximity operations, and capture (category 3)

    Get PDF
    The NASA Johnson Space Center is actively pursuing the development and demonstration of capabilities for automatic rendezvous, proximity operations, and capture (AR&C) using the Space Shuttle as the active vehicle. This activity combines the technologies, expertise, tools, and facilities of the JSC Tracking and Communications Division (EE), Navigation, Control and Aeronautics Division (EG), Automation and Robotics Division (ER), and Structures and Mechanics Division (ES) of the Engineering Directorate and the Flight Design and Dynamics Division (DM) of the Mission Operations Directorate. Potential benefits of AR&C include more efficient and repeatable rendezvous, proximity operations, and capture operations; reduced impacts on the target vehicles (e.g., Orbiter RCS plume loads); reduced flight crew work loads; reduced ground support requirements; and reduced operational constraints. This paper documents the current JSC capabilities/tools/facilities for AR&C and describes a proposed plan for a progression of ground demonstrations and flight tests and demonstrations of AR&C capabilities. This plan involves the maturing of existing technologies in tracking and communications; guidance, navigation and control; mechanisms; manipulators; and systems management and integrating them into several evolutionary demonstration stages

    Autonomous docking ground demonstration

    Get PDF
    The Autonomous Docking Ground Demonstration is an evaluation of the laser sensor system to support the docking phase (12 ft to contact) when operated in conjunction with the guidance, navigation, and control (GN&C) software. The docking mechanism being used was developed for the Apollo/Soyuz Test Program. This demonstration will be conducted using the 6-DOF Dynamic Test System (DTS). The DTS simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration, the laser sensor will be mounted on the target vehicle and the retroflectors will be on the chase vehicle. This arrangement was chosen to prevent potential damage to the laser. The laser sensor system, GN&C, and 6-DOF DTS will be operated closed-loop. Initial conditions to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved

    Autonomous docking ground demonstration (category 3)

    Get PDF
    The NASA Johnson Space Center (JSC) is involved in the development of an autonomous docking ground demonstration. The demonstration combines the technologies, expertise and facilities of the JSC Tracking and Communications Division (EE), Structures and Mechanics Division (ES), and the Navigation, Guidance and Control Division (EG) and their supporting contractors. The autonomous docking ground demonstration is an evaluation of the capabilities of the laser sensor system to support the docking phase (12ft to contact) when operated in conjunction with the Guidance, Navigation and Control Software. The docking mechanism being used was developed for the Apollo Soyuz Test Program. This demonstration will be conducted using the Six-Degrees of Freedom (6-DOF) Dynamic Test System (DTS). The DTS environment simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration the laser sensor will be mounted on the target vehicle and the retroreflectors on the chase vehicle. This arrangement was used to prevent potential damage to the laser. The sensor system. GN&C and 6-DOF DTS will be operated closed-loop. Initial condition to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved. Detailed description of each of the demonstration components (e.g., Sensor System, GN&C, 6-DOF DTS and supporting computer configuration) including their capabilities and limitations will be discussed. A demonstration architecture drawing and photographs of the test configuration will be presented

    Transition from initiation to promoter proximal pausing requires the CTD of RNA polymerase II

    Get PDF
    The C-terminal domain (CTD) of mammalian RNA polymerase II consists of 52 repeats of the consensus hepta-peptide YSPTSPS, and links transcription to the processing of pre-mRNA. Although Pol II with a CTD shortened to five repeats (Pol II Δ5) is transcriptionally inactive on chromatin templates, it is not clear whether CTD is required for promoter recognition in vivo. Here, we demonstrate that in the context of chromatin, Pol II Δ5 can bind to the c-myc promoter with the same efficiency as wild type Pol II. However, Pol II Δ5 does not form a stable initiation complex, and does not transcribe promoter proximal sequences. Fluorescence recovery after photobleaching (FRAP) experiments with cells expressing enhanced green fluorescent protein (EGFP)-tagged Δ5 or wildtype Pol II revealed a single, highly mobile Pol II Δ5 fraction whereas wildtype Pol II yielded less mobile fractions. These data suggest that CTD is not required for promoter recognition, but rather for subsequent formation of a stable initiation complex and isomerization to an elongation competent complex

    Effects of Renal Sympathetic Denervation on 24-hour Blood Pressure Variability

    Get PDF
    Background: In patients with arterial hypertension, increased blood pressure (BP) variability contributes to end organ damage independently from mean levels of arterial BP. Increased BP variability has been linked to alterations in autonomic function including sympathetic overdrive. We hypothesized that catheter-based renal sympathetic denervation (RDN) confers beneficial effects on BP variability. Methods and Results: Eleven consecutive patients with therapy-refractory arterial hypertension (age 68.9 ± 7.0 years; baseline systolic BP 189 ± 23 mmHg despite medication with 5.6 ± 2.1 antihypertensive drugs) underwent bilateral RDN. Twenty-four hour ambulatory BP monitoring (ABPM) was performed before RDN and 6 months thereafter. BP variability was primarily assessed by means of standard deviation of 24-h systolic arterial BP (SDsys). Secondary measures of BP variability were maximum systolic BP (MAXsys) and maximum difference between two consecutive readings of systolic BP (Δmaxsys) over 24 h. Six months after RDN, SDsys, MAXsys, and Δmaxsys were significantly reduced from 16.9 ± 4.6 to 13.5 ± 2.5 mmHg (p = 0.003), from 190 ± 22 to 172 ± 20 mmHg (p < 0.001), and from 40 ± 15 to 28 ± 7 mmHg (p = 0.006), respectively, without changes in concomitant antihypertensive therapy. Reductions of SDsys, MAXsys, and Δmaxsys were observed in 10/11 (90.9%), 11/11 (100%), and 9/11 (81.8%) patients, respectively. Although we noted a significant reduction of systolic office BP by 30.4 ± 27.7 mmHg (p = 0.007), there was only a trend in reduction of average systolic BP assessed from ABPM (149 ± 19 to 142 ± 18 mmHg; p = 0.086). Conclusion: In patients with therapy-refractory arterial hypertension, RDN leads to significant reductions of BP variability. Effects of RDN on BP variability over 24 h were more pronounced than on average levels of BP
    corecore