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Impaired Cardiac Baroreflex Sensitivity Predicts
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his study sought to evaluate cardiac baroreflex sensitivity (BRS) as a predictor of response to renal sympathetic
denervation (RDN).
Background C
atheter-based RDN is a novel treatment option for patients with resistant arterial hypertension. It is assumed that
RDN reduces efferent renal and central sympathetic activity.
Methods F
ifty patients (age 60.3 � 13.8 years [mean � SD mean systolic blood pressure (BP) on ambulatory blood pressure
monitoring (ABPM) 157 � 22 mm Hg, despite medication with 5.4 � 1.4 antihypertensive drugs) underwent RDN.
Prior to RDN, a 30-min recording of continuous arterial BP (Finapres; TNO-TPD Biomedical Instrumentation,
Amsterdam, the Netherlands) and high-resolution electrocardiography (1.6 kHz in orthogonal XYZ leads) was
performed in all patients under standardized conditions. Cardiac BRS was assessed by phase-rectified signal
averaging (BRSPRSA) according to previously published technologies. Response to RDN was defined as a reduction of
mean systolic BP on ABPM by 10 mm Hg or more at 6 months after RDN.
Results S
ix months after RDN, mean systolic BP on ABPM was significantly reduced from 157 � 22 mm Hg to
149 � 20 mm Hg (p ¼ 0.003). Twenty-six of the 50 patients (52%) were classified as responders. BRSPRSA
was significantly lower in responders than nonresponders (0.16 � 0.75 ms/mm Hg vs. 1.54 � 1.73 ms/mm Hg;
p < 0.001). Receiver-operator characteristics analysis revealed an area under the curve for prediction of response to
RDN by BRSPRSA of 81.2% (95% confidence interval: 70.0% to 90.1%; p < 0.001). On multivariable logistic
regression analysis, reduced BRSPRSA was the strongest predictor of response to RDN, which was independent of all
other variables tested.
Conclusions Im
paired cardiac BRS identifies patients with resistant hypertension who respond to RDN. (J Am Coll Cardiol
2013;62:2124–30) ª 2013 by the American College of Cardiology Foundation
See page 2131
Renal sympathetic denervation (RDN) is a novel treat-
ment option for patients with resistant arterial hyper-
tension. It is believed that RDN reduces efferent renal
and central sympathetic activity (1). Clinical evidence
comes from 1 randomized trial that showed substantial
reductions of office-based blood pressures (BPs) 6 months
after RDN, although effects on mean levels of 24-h
ambulatory blood pressure monitoring (ABPM) were
less pronounced (2).
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Genesis of arterial hypertension is multifactorial, including
not only sympathetic but also genetic, lifestyle, dietary, and
metabolic factors. Therefore, it is unlikely that RDN is equally
effective in every single patient. Furthermore, RDN is an
invasive procedure with the inherent risks of side effects.
Interference with the complex renal nervous system by RDN
may cause unfavorable effects in the long-term, which are still
unknown (3). Therefore, identification of patients who
benefit from RDN is of great clinical importance. With
exception of increased baseline BP, however, no marker pre-
dicting response to RDN has been identified so far.

It is plausible to assume that patients with pronounced
sympathetic overactivity benefit the most from RDN.
However, direct assessment of sympathetic activity, either by
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Abbreviations
and Acronyms

ABPM = ambulatory blood

pressure monitoring

AIC = Akaike information

criterion

AUC = area under the curve

BMI = body mass index

BP = blood pressure

BRS = baroreflex sensitivity

BRSPRSA = cardiac

baroreflex sensitivity

assessed by phase-rectified

signal averaging

BRS = cardiac baroreflex
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measuring norepinephrine spillover or by microneurographic
techniques is highly impracticable in a clinical setting.Valuable
information about the activity of the autonomicnervous system
can also be obtained noninvasively by analyzing the inter-
relationship between spontaneous fluctuations of arterial BP
and heart rate, which is also known as the baroreflex. The
baroreflex is the most important neural mechanism in short-
term control of BP. Its functional status is described by
cardiac baroreflex sensitivity (BRS) relating changes of heart rate
to changes of BP. Impaired cardiac BRS is a well-known
phenomenon in hypertensive patients that has been linked to
sympathetic overactivity (4,5).

In the present study, we hypothesized that impaired cardiac
BRS identifies patients with resistant arterial hypertension who
respond to RDN and patients who do not.
SEQ

sensitivity assessed by the

sequence method

CI = confidence interval

IDI = integrated

discrimination improvement

MSNA = muscle

sympathetic nerve activity

PRSA = phase-rectified

signal averaging

RDN = renal sympathetic

denervation

ROC = receiver-operator

characteristic
Methods

Patients. This study prospectively included 50 consecutive
patients of either sex suffering from resistant arterial
hypertension. Eligible patients were 18 years of age and
older, had an office-based systolic BP of �160 mm Hg
(�150 mm Hg for patients with type 2 diabetes mellitus),
and a mean systolic BP on ABPM of �130 mm Hg, despite
being treated with at least 3 antihypertensive drugs with no
changes in medication for a minimum of 2 weeks before
enrollment. Patients were included if they were in sinus
rhythm, which is required for estimation of cardiac BRS,
and if they had an estimated glomerular filtration
rate �45 ml/min�1/1.73 m�2 (using the Modified Diet in
Renal Disease formula). Patients were excluded if they had
a known secondary cause of hypertension other than sleep
apnea or chronic kidney disease. All patients underwent
a complete history and physical examination, assessment of
vital signs, review of medication, and blood chemistry at
baseline and at 6 months after RDN. Treating physicians
and patients were instructed not to change antihypertensive
medications except when medically required. The study was
approved by the local ethics committee. All patients gave
written informed consent.
Renal denervation procedure. Patients were treated
between October 2010 and September 2012. Details of
RDN have been described elsewhere (2,6). Renal angio-
grams were performed via femoral access to confirm
anatomic eligibility. The treatment catheter (Flex by Ardian/
Medtronic Inc., Mountain View, California) was introduced
into each renal artery using a guiding catheter. Up to
6 ablations at 8 W for 2 min each were performed in both
renal arteries. Treatments were delivered from the first distal
main renal artery bifurcation to the ostium proximally and
were spaced longitudinally and rotationally under fluoro-
scopic guidance. Catheter tip impedance and temperature
were constantly monitored, and delivery of radio frequency
energy was regulated by a pre-determined algorithm.
Visceral pain at the time energy was delivered was managed
with intravenous analgetics and sedatives. Heparin was given
to achieve an activated clotting
time during the procedure of
more than 250 s.
Ambulatory blood pressure mon-
itoring. Twenty-fourhourABPM
(oscillometric Spacelabs 90207-32
monitor; Spacelabs Healthcare,
Issaqua, Washington) was per-
formed before RDN and 6 months
thereafter. Readings were taken
every20minduringthedaytimeand
every 60 min at nighttime. Only
ambulatoryBPassessmentsthatmet
theEuropeanSociety ofCardiology
and European Society of Hy-
pertension guidelines (with more
than 70% of daytime and nighttime
readings) were regarded as techni-
cally sufficient for inclusion in the
analysis (7). Mean systolic and dia-
stolic BP were calculated as overall
24-h averages for every patient.
Assessment of cardiac BRS. At
baseline, all patients underwent sim-
ultaneous 30-min high-resolution
electrocardiographic recordings (1.6
kHz in orthogonal XYZ leads) and
noninvasive continuous arterial BP

monitoring using a finger photoplethysmographic device
(Finapres; TNO-TPD Biomedical Instrumentation, Amster-
dam, the Netherlands). The recordings were made using
standardized conditions, with the patients in the supine
resting position after routine morning medications were
administered. An experienced technician, blinded to the
clinical status of the patient, verified the raw signals and
eliminated artifacts as needed. In particular, ectopic beats were
carefully eliminated and calibration signals within the BP
signals were removed. To analyze only normal sinus rhythm
cycles, QRS classifications were carefully reviewed and
manually corrected as appropriate.

Cardiac BRS was assessed from the series of RR
intervals and systolic BP values by phase-rectified signal
averaging (PRSA), according to previously published
technologies (8-11). The exact methodology of BRSPRSA
assessment has been described elsewhere (10,12). Briefly,
increases of systolic BP (BP[) are identified within the
BP time series. Subsequently, segments of RR intervals
around BP[ are identified and averaged. The resulting
bivariate PRSA signal shows RR oscillations related to
increases of systolic BP, whereas heart rate variability due to
other causes is canceled out by the averaging process. The
central amplitude of the bivariate PRSA signal is quantified
by Haar wavelet analysis and normalized to the average
systolic BP increase to obtain an estimate of BRS (10).

Cardiac BRS was also assessed by the sequence method
(BRSSEQ) (13). Briefly, this method identifies progressive
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increases of systolic BP over 3 or more consecutive beats in
which RR intervals simultaneously prolong. If the correla-
tion coefficient between systolic BP and RR interval is
0.85 or more, the slope between systolic BP and RR interval
is calculated for all events. BRSSEQ is finally obtained by the
averaging of all single slopes.
Statistical analysis. Categorical variables are presented as
proportions and were analyzed using Pearson’s chi-square
test. Continuous variables are expressed as mean � stan-
dard deviation, unless otherwise specified. Comparisons
were performed by means of 1-way analysis of variance for
nonpaired variables or Student t test for paired values.
Spearman’s rank correlation was used to test the correlation
between continuous variables. Response to RDN was
defined as reduction of mean systolic BP on ABPM by
10 mm Hg or more 6 months after RDN. Receiver-operator
characteristic (ROC) curves for prediction of response to
RDN were constructed for variables by plotting the
dependency of specificity on sensitivity. ROC curves were
quantified by the integrals of the curves (area under the curve
[AUC]) providing a robust statistical measure of the
predictive power of a variable. Confidence intervals (CIs)
were estimated using bootstrapping based on 1,000 random
resamples (14). Multivariable analyses were implemented by
the adaptation of multinomial logistic regression models.
The selection of variables was based on the Akaike infor-
mation criterion (AIC) (15). Logistic regression coefficients
Table 1 Patient Characteristics

All Patients
(n ¼ 50)

Demographics and risk factors

Age (yrs) 60.3 � 13.8

Male 28 (56.0%)

Body mass index (kg/m2) 30.7 � 5.7

Diabetes mellitus 18 (36.0%)

Coronary artery disease 15 (30.0%)

Creatinine (mg/dl) 0.9 � 0.3

Office-based measurements

Systolic BP (mm Hg) 174 � 28

Diastolic BP (mm Hg) 95 � 15

Heart rate (beats/min) 69 � 11

ABPM

Mean systolic BP (mm Hg) 157 � 22

Mean diastolic BP (mm Hg) 89 � 16

Anti-hypertensive treatment

No. of anti-hypertensive drugs 5.4 � 1.4

ACE-I/ARB 47 (94.0%)

Renin inhibitor 22 (44.0%)

Beta-blockers 39 (78.0%)

Calcium channel blockers 44 (88.0%)

Diuretics 44 (88.0%)

Aldosterone antagonists 12 (24.0%)

Central sympatholytics 37 (74.0%)

Direct vasodilators 14 (28.0%)

Values are mean � SD or n (%). *The p value for comparison between respon
ABPM ¼ ambulatory blood pressure monitoring; ACE-I ¼ angiotensin-convert

pressure.
were fully standardized using the technique described by
Menard (16). The ROC curves of multivariable models were
quantified by C-statistics and compared by bootstrapping.
The incremental prognostic value of a model was assessed
by the integrated discrimination improvement (IDI) score
using the method described by Pencina et al. (17). A 2-tailed
p value <0.05 was considered statistically significant. Matlab
(R2011a, Mathworks Inc., Natick, Massachusetts), CRAN R
(version 2.15.3) and SPSS (version 20.0; SPSS, Chicago,
Illinois) were used for analyses.

Results

The left column of Table 1 shows the demographic indi-
cators and clinical characteristics. Mean age was 60.3 � 13.8
years. There were 22 patients (44.0%) who were female. On
average, patients were taking 5.4 � 1.4 antihypertensive
drugs. RDN was performed in all patients without peri-
procedural complications. At 6 months after RDN, there
was no significant change in the numbers and classes of
antihypertensive drugs (5.3 � 1.4; p ¼ 0.593).

At baseline, mean systolic BP on ABPM was
157 � 22 mm Hg, and mean diastolic BP on ABPM was
89 � 16 mmHg. At 6 months after RDN, mean systolic BP
on ABPM was significantly reduced by 8 � 19 mm Hg
(p ¼ 0.003), and mean diastolic BP was significantly
reduced by 4 � 12 mm Hg (p ¼ 0.022) (Fig. 1, left panel).
Responders
(n ¼ 26)

Nonresponders
(n ¼ 24) p Value*

61.9 � 12.3 58.5 � 15.4 0.547

13 (50.0%) 15 (62.5%) 0.374

32.7 � 6.1 28.6 � 4.6 0.013

10 (38.5%) 8 (33.3%) 0.706

7 (26.9%) 8 (33.3%) 0.621

0.9 � 0.3 0.9 � 0.3 0.616

178 � 30 168 � 26 0.162

99 � 16 91 � 13 0.067

69 � 13 69 � 9 0.871

166 � 22 148 � 18 0.001

92 � 16 86 � 16 0.137

5.5 � 1.5 5.3 � 1.4 0.505

25 (96.2%) 22 (91.7%) 0.504

9 (34.6%) 13 (54.2%) 0.164

19 (73.1%) 20 (83.3%) 0.382

24 (92.3%) 20 (83.3%) 0.329

23 (88.5%) 21 (87.5%) 0.917

7 (26.9%) 5 (20.8%) 0.614

19 (73.1%) 18 (75.0%) 0.877

8 (30.8%) 6 (25.0%) 0.650

ders and nonresponders.
ing enzyme inhibitors; ARB ¼ angiotensin receptor blockers; BP ¼ blood
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Of the 50 patients studied, 26 patients (52%) had reduc-
tions of mean systolic BP on ABPM of 10 mm Hg or more.
These patients were classified as responders to RDN. The
middle and right columns of Table 1 show demographic
indicators and clinical characteristics of responders and
nonresponders, respectively. Compared to nonresponders,
the responders had a higher body mass index (BMI)
(32.7 � 6.1 kg/m2 vs. 28.6 � 4.6 kg/m2; p ¼ 0.013)
and a higher mean systolic BP on ABPM at baseline
(166� 22mmHg vs. 148� 18mmHg; p¼ 0.001). All other
baseline variables showed no significant difference between
responders and nonresponders.

In the patients studied, BRSPRSA was 0.82 � 1.48 ms/
mm Hg. BRSPRSA significantly correlated with the reduc-
tion of mean systolic BP after 6 months (r ¼ �0.46;
p < 0.001). Patients with BRSPRSA in the lowest tertile
showed the most pronounced reductions of mean systolic
BP of 17 � 20 mm Hg at 6 months followed by patients
with BRSPRSA in the middle (8 � 13 mm Hg) and highest
tertile (0 � 20 mm Hg) (p ¼ 0.023 for comparison of ter-
tiles) (Fig. 1, right panel). There was a highly significant
association between BRSPRSA and response to RDN, with
BRSPRSA being significantly lower in responders than
nonresponders (0.16 � 0.75 ms/mm Hg vs. 1.54�1.73 ms/
mm Hg; p < 0.001) (Fig. 2, left panel). This remained true
Figure 1 Effects of RDN on Mean BP Changes According to Barorefl

Effects of renal sympathetic denervation (RDN) on mean systolic and diastolic blood press

all patients and in patients stratified by tertiles of baseline baroreflex sensitivity. Bars sh
in subgroups of patients, divided according to baseline mean
systolic BP �150 mm Hg and >150 mm Hg and BMI <30
kg/m2 and �30 kg/m2 (Fig. 2, middle and right panels).
Figure 3A shows the ROC curve of BRSPRSA for

prediction of response to RDN. The BRSPRSA yielded an
AUC of 81.2% (95% CI: 70.0% to 90.1%; p < 0.001),
which was significantly higher than the AUCs of all other
variables tested (p < 0.001 for all). Mean systolic BP at
baseline and BMI, which were the only other variables
significantly associated with response to RDN, yielded
AUCs of 77.1% (95% CI: 64.9% to 88.5%; p < 0.001) and
73.4% (95% CI: 59.7% to 84.1%; p < 0.001), respectively.
Table 2 shows the results of the multivariable logistic
regression analysis. BRSPRSA was the strongest predictor of
response to RDN, whereas mean systolic BP and BMI were
of borderline statistical significance.

Finally, we tested whether adding BRSPRSA improves
prediction of response to RDN by mean systolic BP and
BMI. The multivariable model based on mean systolic BP
and BMI yielded a C-statistic of 78.9% (95% CI: 66.8% to
88.0%). Implementing BRSPRSA into the model leads to
a significant increase of the C-statistic to 89.5% (95% CI:
80.3% to 95.5%; p < 0.001 for difference) (Fig. 3B). At the
same time, the relative IDI score improved by 80%
(p < 0.001), whereas the absolute IDI score improved by
ex Sensitivity

ure (BP) changes on ambulatory blood pressure monitoring (ABPM) after 6 months in

ow standard error of the mean. ANOVA ¼ analysis of variance.



Figure 2 Baroreflex Sensitivity in Responders and Nonresponders to RDN

Left panel shows baroreflex sensitivity in responders and nonresponders to renal sympathetic denervation (RDN) in all patients. Middle and right panels show subgroups of

patients with mean baseline systolic blood pressure (BP) levels �150 mm Hg and >150 mm Hg on ambulatory BP monitoring and body mass index (BMI) <30 kg/m2

and �30 kg/m2, respectively. Bars show standard error of the mean.
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0.20 (p < 0.001). The combination of mean systolic BP,
BMI, and BRSPRSA was the model with the lowest AIC
score of 49.3, indicating that the model could not be
significantly improved by any other variable.

We also tested whether BRSSEQ was a predictor of
response to RDN. The BRSSEQ could not be calculated in
7 patients (14%) for methodological reasons. Both BRSSEQ
and BRSPRSA were significantly correlated (r ¼ 0.76;
p < 0.001). Also, BRSSEQ was significantly associated with
response to RDN and yielded an AUC of 73.2% (95% CI:
60.4% to 85.1%; p < 0.001) which was, however, signifi-
cantly lower than that of BRSPRSA (p< 0.001 for difference).

Discussion

The findings of our study indicate that cardiac BRS is
a strong and independent predictor of response to RDN in
patients with resistant arterial hypertension. In two-thirds of
patients with BRSPRSA �0.62 ms/mm Hg (lowest and
middle tertile) RDN led to substantial reductions of mean
systolic BP on ABPM of 13 � 17 mm Hg. In contrast, in
one-third of patients with BRSPRSA >0.62 ms/mm Hg
(upper tertile), RDN had no significant effects on mean
systolic BP (change of 0 � 20 mm Hg). The predictive
value of BRSPRSA was stronger than that of elevated mean
systolic BP at baseline and BMI, the only other variables
that were significantly associated with response to RDN.
Finally, BRSPRSA significantly improved prediction of
response to RDN based on a combination of mean systolic
BP at baseline and BMI by significantly improving the
C-statistic from 78.9% to 89.5%.
RDN and the sympathetic nervous system. Several
experimental and clinical studies investigated the effects of
RDN on the sympathetic nervous system in patients with
resistant arterial hypertension. First, evidence that RDN
reduces efferent renal sympathetic activity came from
a subgroup analysis of 10 patients enrolled in the Symplicity
HTN-1 (Renal Sympathetic Denervation in Patients with
Treatment-Resistant Hypertension-1) study showing that
norepinephrine spillover assessed by the isotope dilution
method was significantly reduced by 47% (6). A subsequent
case report suggested that RDN may also reduce central
sympathetic activity by demonstrating significant effects on
muscle sympathetic nerve activity (MSNA) and cardiac BRS
(18). This finding was questioned by a recent study that
failed to demonstrate significant effects of RDN on MSNA,
heart rate variability, and cardiac BRS in 11 patients (19). In
this study, however, 5 of 11 patients had baseline systolic



Figure 3 Prediction of Response to RDN

Receiver-operator characteristic (ROC) curves of risk variables for prediction of response to renal sympathetic denervation (RDN). (A) ROC curve of BRS assessed by phase-

rectified signal averaging baroreflex sensitivity (BRSPRSA). (B) ROC curves of 2 different multivariable models. Model 1 includes mean systolic blood pressure at baseline (SYS)

and body mass index (BMI). Model 2 additionally includes BRSPRSA and is superior to Model 1 in prediction of response to RDN. AUC ¼ area under the curve; BRS ¼ baroflex

sensitivity; BRSPRSA ¼ baroreflex assessed by sensitivity phase-rectified signal averaging C ¼ C-statistic.

JACC Vol. 62, No. 22, 2013 Zuern et al.
December 3, 2013:2124–30 Baroreflex Sensitivity and Renal Denervation

2129
office BP levels of 140 mm Hg or less and remarkably low
levels of baseline MSNA (20). Therefore, lack of effects in
these patients may indicate that a high baseline level of
sympathetic tone is necessary to achieve a response to RDN.
A more recent study in 25 patients finally demonstrated
highly significant reductions of MSNA by RDN (1). The
findings of our study are in line with these observations as
depressed cardiac BRS might identify patients with high
central sympathetic tone who respond favorably to RDN.
Cardiac BRS. Depressed cardiac BRS is a well-known
phenomenon in various diseases characterized by sympa-
thetic overactivity including heart failure (21), myocardial
infarction (22), arrhythmias (23), renal insufficiency (24),
diabetes mellitus (25), and arterial hypertension (4,5). Over
the last couple decades, various methods have been proposed
to assess cardiac BRS. The invasive methods quantify
prolongations of the RR intervals to artificial increases of BP
by vasoactive drugs, whereas noninvasive methods analyze
spontaneous fluctuations of RR interval and systolic BP
(26). Noninvasive assessment of BRS has practical appeal,
but it is challenging due to the complex nature of
both signals. In particular, spectral methods are highly
sensitive to artifacts and ventricular premature complexes
Table 2
Multivariable Logistic Regression Analysis
for Prediction of Response to Renal
Sympathetic Denervation

Variable
Standardized Coefficients

(95% CI) p Value

BRSPRSA �0.517 (�0.994 to �0.040) 0.035

Mean systolic BP (ABPM) 0.206 (�0.004 to 0.416) 0.056

Body mass index 0.187 (�0.02 to 0.395) 0.079

BRS ¼ baroreflex sensitivity; CI ¼ confidence interval; PRSA ¼ phase-rectified signal averaging;
other abbreviations as in Table 1.
making results unreliable (27). In the present study, we
assessed BRS by the PRSA method, which overcomes these
shortcomings (10,12). In a recent study, including 941 post-
infarction patients, BRSPRSA was shown to provide signifi-
cantly better prognostic accuracy than other methods of BRS
assessment (11). However, in our study, BRS assessed by the
sequence method was also a significant predictor of response
to RDN.

Although impaired BRSPRSA identified responders to
RDN, it did not predict the exact extent of BP reductions
achieved by RDN. This could be explained by the intrinsic
variability of both BRSAPRSA and BP, by procedural differ-
ences, as well as by RDN-induced effects on BP that are not
related to reduction of central sympathetic activity.
ABPM versus office-based BP measurements. In con-
trast to previous studies that tested the effects of RDN on
office-based BP measurements (2), we used mean systolic
BP levels on ABPM to define response to therapy.
Compared with office-based measurements, ABPM
removes observer bias, reduces measurement error, has
a greater reproducibility, minimizes the white-coat effect,
and, most importantly, yields more accurate prognostic
information (28,29). In our patients, we also observed highly
significant reductions of systolic office-based BP of 23 �
21 mm Hg (p < 0.001), which is in the range of previous
reports (2,6).

The Symplicity HTN-2 study reported a responder rate
to RDN of 84%, defined as a reduction of office-based
systolic BP of 10 mm Hg or more (2). In our study, 39 of
50 patients (78%) fulfilled the HTN2 criteria of response
(p ¼ 0.611 for comparison with the responder rate of the
HTN2 study). Of interest, BRSPRSA also predicted response
to RDN defined by reductions of systolic office BP
(�10 mm Hg), yielding an AUC of 72.1% (95% CI: 54.9%
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to 85.8%; p < 0.001). As known from pharmacological
trials, reductions of mean systolic BP on ABPM are
generally less pronounced than office-based BP reductions
(30). The numerically lower responder rate of 52% in our
study compared with previous reports is explained by the
mode of BP measurements (ABPM vs. office-based).
Study limitations. First, assessment of BRS is limited to
patients in sinus rhythm. Second, although our study design
was prospective, used cut-off values of BRSPRSA needed to
be prospectively validated in independent datasets. Third,
noninvasive assessment of BRS requires continuous assess-
ment of arterial BP by technologies that may not be avail-
able in all centers. Fourth, we did not obtain direct measures
of sympathetic activity such as MSNA or norepinephrine
spillover, which are, however, highly impracticable in
a clinical setting. Fifth, it remains subject to further inves-
tigations whether RDN leads to an improvement of
impaired BRS. Finally, RDN might induce additional
effects on systolic BP reductions beyond 6 months, which
are not covered by our analyses. However, preliminary data
suggest that BRSPRSA is also a significant predictor of
response to RDN up to 12 months after RDN. In 29 of
50 patients with complete 12-month follow-up, BRSPRSA
yielded an AUC of 83.3% (95% CI: 68.1% to 93.5%;
p < 0.001) for prediction of response 12 months after RDN.

Conclusions

BRS assessment helps to identify patients who are most
likely to benefit from RDN and, of equal importance,
patients who do not. Selection of candidates for RDN
should take cardiac BRS into account.
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