9 research outputs found

    Enhanced C/EBPβ function promotes hypertrophic versus hyperplastic fat tissue growth and prevents steatosis in response to high-fat diet feeding

    Get PDF
    Chronic obesity is correlated with severe metabolic and cardiovascular diseases as well as with an increased risk for developing cancers. Obesity is usually characterized by fat accumulation in enlarged-hypertrophic – adipocytes that are a source of inflammatory mediators, which promote the development and progression of metabolic disorders. Yet, in certain healthy obese individuals, fat is stored in metabolically more favorable hyperplastic fat tissue that contains an increased number of smaller adipocytes that are less inflamed. In a previous study we demonstrated that loss of the inhibitory protein-isoform C/EBPβ-LIP and the resulting augmented function of the transactivating isoform C/EBPβ-LAP promotes fat metabolism under normal feeding conditions and expands health-and lifespan in mice. Here we show that in mice on a high-fat diet, LIP-deficiency results in adipocyte hyperplasia associated with reduced inflammation and metabolic improvements. Furthermore, fat storage in subcutaneous depots is significantly enhanced specifically in LIP-deficient male mice. Our data identify C/EBPβ as a regulator of adipocyte fate in response to increased fat intake, which has major implications for metabolic health and aging

    Nucleolar retention of a translational C/EBPα isoform stimulates rDNA transcription and cell size

    Get PDF
    The messenger RNA of the intronless CEBPA gene is translated into distinct protein isoforms through the usage of consecutive translation initiation sites. These translational isoforms have distinct functions in the regulation of differentiation and proliferation due to the presence of different N-terminal sequences. Here, we describe the function of an N-terminally extended protein isoform of CCAAT enhancer-binding protein α (C/EBPα) that is translated from an alternative non-AUG initiation codon. We show that a basic amino-acid motif within its N-terminus is required for nucleolar retention and for interaction with nucleophosmin (NPM). In the nucleoli, extended-C/EBPα occupies the ribosomal DNA (rDNA) promoter and associates with the Pol I-specific factors upstream-binding factor 1 (UBF-1) and SL1 to stimulate rRNA synthesis. Furthermore, during differentiation of HL-60 cells, endogenous expression of extended-C/EBPα is lost concomitantly with nucleolar C/EBPα immunostaining probably reflecting the reduced requirement for ribosome biogenesis in differentiated cells. Finally, overexpression of extended-C/EBPα induces an increase in cell size. Altogether, our results suggest that control of rRNA synthesis is a novel function of C/EBPα adding to its role as key regulator of cell growth and proliferation

    May 19, 2012 (Pages 2719-2946)

    Get PDF
    The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E-binding proteins (4E-BPs). However, little is known about vertebrate mRNAs that are specifically controlled by mTORC1 signalling and are engaged in regulating mTORC1-associated physiology. Here, we show that translation of the CCAAT/enhancer binding protein beta (C/EBP beta) mRNA into the C/EBP beta-LIP isoform is suppressed in response to mTORC1 inhibition either through pharmacological treatment or through calorie restriction. Our data indicate that the function of 4E-BPs is required for suppression of LIP. Intriguingly, mice lacking the cis-regulatory upstream open reading frame (uORF) in the C/EBP beta-mRNA, which is required for mTORC1-stimulated translation into C/EBP beta-LIP, display an improved metabolic phenotype with features also found under calorie restriction. Thus, our data suggest that translational adjustment of C/EBP beta-isoform expression is one of the key processes that direct metabolic adaptation in response to changes in mTORC1 activity

    Tuberous sclerosis complex is required for tumor maintenance in MYC-driven Burkitt's lymphoma

    Get PDF
    The tuberous sclerosis complex (TSC) 1/2 is a negative regulator of the nutrient-sensing kinase mechanistic target of rapamycin complex (mTORC1), and its function is generally associated with tumor suppression. Nevertheless, biallelic loss of function of TSC1 or TSC2 is rarely found in malignant tumors. Here, we show that TSC1/2 is highly expressed in Burkitt's lymphoma cell lines and patient samples of human Burkitt's lymphoma, a prototypical MYC-driven cancer. Mechanistically, we show that MYC induces TSC1 expression by transcriptional activation of the TSC1 promoter and repression of miR-15a. TSC1 knockdown results in elevated mTORC1-dependent mitochondrial respiration enhanced ROS production and apoptosis. Moreover, TSC1 deficiency attenuates tumor growth in a xenograft mouse model. Our study reveals a novel role for TSC1 in securing homeostasis between MYC and mTORC1 that is required for cell survival and tumor maintenance in Burkitt's lymphoma. The study identifies TSC1/2 inhibition and/or mTORC1 hyperactivation as a novel therapeutic strategy for MYC-driven cancers

    Figure 9 from: Neubauer TA, van de Velde S, Yanina T, Wesselingh FP (2018) A late Pleistocene gastropod fauna from the northern Caspian Sea with implications for Pontocaspian gastropod taxonomy. ZooKeys 770: 43-103. https://doi.org/10.3897/zookeys.770.25365

    No full text

    Figure 4 from: Wesselingh FP, Neubauer TA, Anistratenko VV, Vinarski MV, Yanina T, ter Poorten JJ, Kijashko P, Albrecht C, Anistratenko OYu, D’Hont A, Frolov P, Gándara AM, Gittenberger A, Gogaladze A, Karpinsky M, Lattuada M, Popa L, Sands AF, van de Velde S, Vandendorpe J, Wilke T (2019) Mollusc species from the Pontocaspian region – an expert opinion list. ZooKeys 827: 31-124. https://doi.org/10.3897/zookeys.827.31365

    No full text
    corecore