198 research outputs found

    Ultrasensitive force detection with a nanotube mechanical resonator

    Get PDF
    Since the advent of atomic force microscopy, mechanical resonators have been used to study a wide variety of phenomena, such as the dynamics of individual electron spins, persistent currents in normal metal rings, and the Casimir force. Key to these experiments is the ability to measure weak forces. Here, we report on force sensing experiments with a sensitivity of 12 zN Hz^(-1/2) at a temperature of 1.2 K using a resonator made of a carbon nanotube. An ultra-sensitive method based on cross-correlated electrical noise measurements, in combination with parametric downconversion, is used to detect the low-amplitude vibrations of the nanotube induced by weak forces. The force sensitivity is quantified by applying a known capacitive force. This detection method also allows us to measure the Brownian vibrations of the nanotube down to cryogenic temperatures. Force sensing with nanotube resonators offers new opportunities for detecting and manipulating individual nuclear spins as well as for magnetometry measurements.Comment: Early version. To be published in Nature Nanotechnolog

    Transient pulsed radio emission from a magnetar

    Get PDF
    Anomalous X-ray pulsars (AXPs) are slowly rotating neutron stars with very bright and highly variable X-ray emission that are believed to be powered by ultra-strong magnetic fields of >1e14 G, according to the 'magnetar' model. The radio pulsations that have been observed from more than 1,700 neutron stars with weaker magnetic fields have never been detected from any of the dozen known magnetars. The X-ray pulsar XTE J1810-197 was revealed (in 2003) as the first AXP with transient emission when its luminosity increased 100-fold from the quiescent level; a coincident radio source of unknown origin was detected one year later. Here we show that XTE J1810-197 emits bright, narrow, highly linearly polarized radio pulses, observed at every rotation, thereby establishing that magnetars can be radio pulsars. There is no evidence of radio emission before the 2003 X-ray outburst (unlike ordinary pulsars, which emit radio pulses all the time), and the flux varies from day to day. The flux at all radio frequencies is approximately equal -- and at >20 GHz XTE J1810-197 is currently the brightest neutron star known. These observations link magnetars to ordinary radio pulsars, rule out alternative accretion models for AXPs, and provide a new window into the coronae of magnetars.Comment: accepted by Nature; some new data and significantly revised discussio

    Non-thermal emission processes in massive binaries

    Full text link
    In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy and Astrophysics Review. Astronomy and Astrophysics Review, in pres

    The K+ Channel Opener 1-EBIO Potentiates Residual Function of Mutant CFTR in Rectal Biopsies from Cystic Fibrosis Patients

    Get PDF
    BACKGROUND: The identification of strategies to improve mutant CFTR function remains a key priority in the development of new treatments for cystic fibrosis (CF). Previous studies demonstrated that the K⁺ channel opener 1-ethyl-2-benzimidazolone (1-EBIO) potentiates CFTR-mediated Cl⁻ secretion in cultured cells and mouse colon. However, the effects of 1-EBIO on wild-type and mutant CFTR function in native human colonic tissues remain unknown. METHODS: We studied the effects of 1-EBIO on CFTR-mediated Cl⁻ secretion in rectal biopsies from 47 CF patients carrying a wide spectrum of CFTR mutations and 57 age-matched controls. Rectal tissues were mounted in perfused micro-Ussing chambers and the effects of 1-EBIO were compared in control tissues, CF tissues expressing residual CFTR function and CF tissues with no detectable Cl⁻ secretion. RESULTS: Studies in control tissues demonstrate that 1-EBIO activated CFTR-mediated Cl⁻ secretion in the absence of cAMP-mediated stimulation and potentiated cAMP-induced Cl⁻ secretion by 39.2±6.7% (P<0.001) via activation of basolateral Ca²⁺-activated and clotrimazole-sensitive KCNN4 K⁺ channels. In CF specimens, 1-EBIO potentiated cAMP-induced Cl⁻ secretion in tissues with residual CFTR function by 44.4±11.5% (P<0.001), but had no effect on tissues lacking CFTR-mediated Cl⁻ conductance. CONCLUSIONS: We conclude that 1-EBIO potentiates Cl⁻secretion in native CF tissues expressing CFTR mutants with residual Cl⁻ channel function by activation of basolateral KCNN4 K⁺ channels that increase the driving force for luminal Cl⁻ exit. This mechanism may augment effects of CFTR correctors and potentiators that increase the number and/or activity of mutant CFTR channels at the cell surface and suggests KCNN4 as a therapeutic target for CF

    Superconductivity in a single C60 transistor

    Full text link
    Single molecule transistors (SMTs) are currently attracting enormous attention as possible quantum information processing devices. An intrinsic limitation to the prospects of these however is associated to the presence of a small number of quantized conductance channels, each channel having a high access resistance of at best RK/2=h/2e2R_{K}/2=h/2e^{2}=12.9 kΩ\Omega. When the contacting leads become superconducting, these correlations can extend throughout the whole system by the proximity effect. This not only lifts the resistive limitation of normal state contacts, but further paves a new way to probe electron transport through a single molecule. In this work, we demonstrate the realization of superconducting SMTs involving a single C60 fullerene molecule. The last few years have seen gate-controlled Josephson supercurrents induced in the family of low dimensional carbon structures such as flakes of two-dimensional graphene and portions of one-dimensional carbon nanotubes. The present study involving a full zero-dimensionnal fullerene completes the picture.Comment: 12 pages, 3 figure

    Stabilization of ribozyme-like cis-noncoding rRNAs induces apoptotic and nonapoptotic death in lung cells

    Get PDF
    Bidirectional non-protein-coding RNAs are ubiquitously transcribed from the genome. Convergent sense and antisense transcripts may regulate each other. Here, we examined the convergent cis-noncoding rRNAs (nc-rRNAs) in A5 and E9 lung cancer models. Sense nc-rRNAs extending from rDNA intergenic region to internal transcribed spacer of around 10 kb in length were identified. nc-rRNAs in sense direction exhibited in vitro characteristics of ribozymes, namely, degradation upon incubation with MgCl2 and stabilization by complementary oligonucleotides. Detection of endogenous cleavage-ligation products carrying internal deletion of hundreds to thousands nucleotides by massively parallel sequencing confirmed the catalytic properties. Transfection of oligonucleotides pairing with antisense nc-rRNAs stabilized both target and complementary transcripts, perturbed rRNA biogenesis, and induced massive cell death via apoptotic and/or nonapoptotic mechanisms depending on cell type and treatment. Oligonucleotides targeting cellular sense transcripts are less responsive. Spontaneously detached cells, though rare, also showed accumulation of nc-rRNAs and perturbation of rRNA biogenesis. Direct participation of nc-rRNAs in apoptotic and nonapoptotic death was demonstrated by transfection of synthetic nc-rRNAs encompassing the rDNA promoter. In sum, convergent cis-nc-rRNAs follow a feed-forward mechanism to regulate each other and rRNA biogenesis. This opens an opportunity to disrupt rRNA biogenesis, commonly upregulated in cancers, via inhibition of ribozyme-like activities in nc-rRNAs

    Finding the sources of missing heritability in a yeast cross

    Get PDF
    For many traits, including susceptibility to common diseases in humans, causal loci uncovered by genetic mapping studies explain only a minority of the heritable contribution to trait variation. Multiple explanations for this "missing heritability" have been proposed. Here we use a large cross between two yeast strains to accurately estimate different sources of heritable variation for 46 quantitative traits and to detect underlying loci with high statistical power. We find that the detected loci explain nearly the entire additive contribution to heritable variation for the traits studied. We also show that the contribution to heritability of gene-gene interactions varies among traits, from near zero to 50%. Detected two-locus interactions explain only a minority of this contribution. These results substantially advance our understanding of the missing heritability problem and have important implications for future studies of complex and quantitative traits

    Copy Number Variation of CCL3-like Genes Affects Rate of Progression to Simian-AIDS in Rhesus Macaques (Macaca mulatta)

    Get PDF
    Variation in genes underlying host immunity can lead to marked differences in susceptibility to HIV infection among humans. Despite heavy reliance on non-human primates as models for HIV/AIDS, little is known about which host factors are shared and which are unique to a given primate lineage. Here, we investigate whether copy number variation (CNV) at CCL3-like genes (CCL3L), a key genetic host factor for HIV/AIDS susceptibility and cell-mediated immune response in humans, is also a determinant of time until onset of simian-AIDS in rhesus macaques. Using a retrospective study of 57 rhesus macaques experimentally infected with SIVmac, we find that CCL3L CNV explains approximately 18% of the variance in time to simian-AIDS (p<0.001) with lower CCL3L copy number associating with more rapid disease course. We also find that CCL3L copy number varies significantly (p<10−6) among rhesus subpopulations, with Indian-origin macaques having, on average, half as many CCL3L gene copies as Chinese-origin macaques. Lastly, we confirm that CCL3L shows variable copy number in humans and chimpanzees and report on CCL3L CNV within and among three additional primate species. On the basis of our findings we suggest that (1) the difference in population level copy number may explain previously reported observations of longer post-infection survivorship of Chinese-origin rhesus macaques, (2) stratification by CCL3L copy number in rhesus SIV vaccine trials will increase power and reduce noise due to non-vaccine-related differences in survival, and (3) CCL3L CNV is an ancestral component of the primate immune response and, therefore, copy number variation has not been driven by HIV or SIV per se

    PEDF and GDNF are key regulators of photoreceptor development and retinal neurogenesis in reaggregates from chick embryonic retina

    Get PDF
    Here, role(s) of pigment epithelial-derived factor (PEDF) and glial-derived neurotrophic factor (GDNF) on photoreceptor development in three-dimensional reaggregates from the retinae of the E6 chick embryo (rosetted spheroids) was investigated. Fully dispersed cells were reaggregated under serum-reduced conditions and supplemented with 50 ng/ml PEDF alone or in combination with 50 ng/ml GDNF. The spheroids were analyzed for cell growth, differentiation, and death using proliferating cell nuclear antigen, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling, and other immunocytochemical stainings and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) methods. PEDF strongly promoted synthesis of the messenger RNAs for blue and violet cone opsins and to a lesser extent on the red and green cone opsins. This correlated with an increase in the number of cone photoreceptors, as determined by the cone cell marker CERN906. Likewise, PEDF nearly completely inhibited rod differentiation, as detected by immunostaining with anti-rho4D2 and RT-PCR. Furthermore, PEDF accelerated proliferation of cells in the spheroids and inhibited apoptosis. As negative effects, PEDF inhibited the normal histotypic tissue formation of retinal aggregates and reduced the frequency of photoreceptor rosettes and IPL-like areas. Noticeably, supplementation of PEDF-treated cultures with GDNF reversed the effects of PEDF on spheroid morphology and on rod differentiation. This study establishes that PEDF strongly affects three-dimensional retinogenesis in vitro, most notably by inhibiting rod development and supporting proliferation and differentiation of cones, effects which are partially counteracted by GDNF
    corecore