291 research outputs found

    Fourier Holography for Enhanced Visualization of Volume Phase Objects through Exploitation of Non-Linearities Associated with Silver Halide Emulsions

    Get PDF
    In an effort to enhance visualization of shock fronts associated with single explosive particle (diameter — 100μm) detonation, a Fourier holographic recording technique has been developed which relies on film non-linearities to greatly increase phaseobject visibility. The driving force behind this work is the investigation of detonation dynamics in dispersed particle explosives. These explosives, used for mine neutralization, are comprised of a fine, solid particulate dust which is dispersed as a cloud in the atmosphere over a given area. When detonation is initiated in some portion of the cloud, the ensuing detonation wave propagates throughout the entire cloud and results in an explosion, generating a tremendous pressure which serves to destroy or render useless any land mines present. Understanding the mechanism by which individual particles interact to sustain detonation in these solid dispersed particle explosives has been the research goal, and has led directly to the development of several holographic techniques

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Is FKBP5 a genetic marker of affective psychosis? A case control study and analysis of disease related traits

    Get PDF
    BACKGROUND: A dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been proposed as an important pathogenic factor in depression. Genetic variants of FKBP5, a protein of the HPA system modulating the glucocorticoid receptor, have been reported to be genetically associated with improved response to medical treatment and an increase of depressive episodes. METHODS: We examined three single nucleotide polymorphisms (SNPs) in FKBP5, rs4713916 in the proposed promoter region, rs1360780 in the second intron and rs3800373 in the 3'-untranslated region (3'-UTR), in a case-control study of Caucasian origin (affective psychosis: n = 248; controls: n = 188) for genetic association and association with disease related traits. RESULTS: Allele and genotype frequencies of rs4713916, rs1360780 and rs3800373 were not significantly different between cases and controls. Two three-locus haplotypes, G-C-T and A-T-G, accounted for 86.2% in controls. Odds ratios were not increased between cases and controls, except the rare haplotype G-C-G (OR 6.81), representing 2.1% of cases and 0.3% of controls. The frequency of rs4713916AG in patients deviated from expected Hardy-Weinberg equilibrium, the genotype AA at rs4713916 in monopolar depression (P = 0.011), and the two-locus haplotype rs1360780T – rs3800373T in the total sample (overall P = 0.045) were nominally associated with longer continuance of disease. CONCLUSION: Our data do not support a significant genetic contribution of FKBP5 polymorphisms and haplotypes to affective psychosis, and the findings are inconclusive regarding their contribution to disease-related traits

    Phenotypic differences between dermal fibroblasts from different body sites determine their responses to tension and TGFβ1

    Get PDF
    BACKGROUND: Wounds in the nonglabrous skin of keloid-prone individuals tend to cause large disordered accumulations of collagen which extend beyond the original margins of the wound. In addition to abnormalities in keloid fibroblasts, comparison of dermal fibroblasts derived from nonwounded glabrous or nonglabrous skin revealed differences that may account for the observed location of keloids. METHODS: Fibroblast apoptosis and the cellular content of α-smooth-muscle actin, TGFβ1 receptorII and ED-A fibronectin were estimated by FACS analysis. The effects of TGFβ1 and serum were examined. RESULTS: In monolayer cultures non-glabrous fibroblasts were slower growing, had higher granularity and accumulated more α-smooth-muscle actin than fibroblasts from glabrous tissues. Keloid fibroblasts had the highest level of α-smooth-muscle actin in parallel with their expression level of ED-A fibronectin. TGFβ1 positively regulated α-smooth-muscle actin expression in all fibroblast cultures, although its effects on apoptosis in fibroblasts from glabrous and non-glabrous tissues were found to differ. The presence of collagen I in the ECM resulted in reduction of α-smooth-muscle actin. A considerable percentage of the apoptotic fibroblasts in attached gels were α-smooth-muscle actin positive. The extent of apoptosis correlated positively with increased cell and matrix relaxation. TGFβ1 was unable to overcome this apoptotic effect of matrix relaxation. CONCLUSION: The presence of myofibroblasts and the apoptosis level can be regulated by both TGFβ1 and by the extracellular matrix. However, reduction of tension in the matrix is the critical determinant. This predicts that the tension in the wound bed determines the type of scar at different body sites

    A high-throughput and sensitive method to measure Global DNA Methylation: Application in Lung Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide changes in DNA methylation are an epigenetic phenomenon that can lead to the development of disease. The study of global DNA methylation utilizes technology that requires both expensive equipment and highly specialized skill sets.</p> <p>Methods</p> <p>We have designed and developed an assay, <it>CpG</it>lobal, which is easy-to-use, does not utilize PCR, radioactivity and expensive equipment. <it>CpG</it>lobal utilizes methyl-sensitive restriction enzymes, HRP Neutravidin to detect the biotinylated nucleotides incorporated in an end-fill reaction and a luminometer to measure the chemiluminescence. The assay shows high accuracy and reproducibility in measuring global DNA methylation. Furthermore, <it>CpG</it>lobal correlates significantly with High Performance Capillary Electrophoresis (HPCE), a gold standard technology. We have applied the technology to understand the role of global DNA methylation in the natural history of lung cancer. World-wide, it is the leading cause of death attributed to any cancer. The survival rate is 15% over 5 years due to the lack of any clinical symptoms until the disease has progressed to a stage where cure is limited.</p> <p>Results</p> <p>Through the use of cell lines and paired normal/tumor samples from patients with non-small cell lung cancer (NSCLC) we show that global DNA hypomethylation is highly associated with the progression of the tumor. In addition, the results provide the first indication that the normal part of the lung from a cancer patient has already experienced a loss of methylation compared to a normal individual.</p> <p>Conclusion</p> <p>By detecting these changes in global DNA methylation, <it>CpG</it>lobal may have a role as a barometer for the onset and development of lung cancer.</p

    In epithelial cancers, aberrant COL17A1 promoter methylation predicts its misexpression and increased invasion

    Get PDF
    Background: Metastasis is a leading cause of death among cancer patients. In the tumor microenvironment, altered levels of extracellular matrix proteins, such as collagens, can facilitate the first steps of cancer cell metastasis, including invasion into surrounding tissue and intravasation into the blood stream. However, the degree of misexpression of collagen genes in tumors remains understudied, even though this knowledge could greatly facilitate the development of cancer treatment options aimed at preventing metastasis. Methods: We systematically evaluate the expression of all 44 collagen genes in breast cancer and assess whether their misexpression provides clinical prognostic significance. We use immunohistochemistry on 150 ductal breast cancers and 361 cervical cancers and study DNA methylation in various epithelial cancers. Results: In breast cancer, various tests show that COL4A1 and COL4A2 overexpression and COL17A1 (BP180, BPAG2) underexpression provide independent prognostic strength (HR = 1.25, 95% CI = 1.17–1.34, p = 3.03 × 10; HR = 1.18, 95% CI = 1.11–1.25, p = 8.11 × 10; HR = 0.86, 95% CI = 0.81–0.92, p = 4.57 × 10; respectively). Immunohistochemistry on ductal breast cancers confirmed that the COL17A1 protein product, collagen XVII, is underexpressed. This strongly correlates with advanced stage, increased invasion, and postmenopausal status. In contrast, immunohistochemistry on cervical tumors showed that collagen XVII is overexpressed in cervical cancer and this is associated with increased local dissemination. Interestingly, consistent with the opposed direction of misexpression in these cancers, the COL17A1 promoter is hypermethylated in breast cancer and hypomethylated in cervical cancer. We also find that the COL17A1 promoter is hypomethylated in head and neck squamous cell carcinoma, lung squamous cell carcinoma, and lung adenocarcinoma, in all of which collagen XVII overexpression has previously been shown. Conclusions: Paradoxically, collagen XVII is underexpressed in breast cancer and overexpressed in cervical and other epithelial cancers. However, the COL17A1 promoter methylation status accurately predicts both the direction of misexpression and the increased invasive nature for five out of five epithelial cancers. This implies that aberrant epigenetic control is a key driver of COL17A1 gene misexpression and tumor cell invasion. These findings have significant clinical implications, suggesting that the COL17A1 promoter methylation status can be used to predict patient outcome. Moreover, epigenetic targeting of COL17A1 could represent a novel strategy to prevent metastasis in patients

    In Vivo Expression of MHC Class I Genes Depends on the Presence of a Downstream Barrier Element

    Get PDF
    Regulation of MHC class I gene expression is critical to achieve proper immune surveillance. In this work, we identify elements downstream of the MHC class I promoter that are necessary for appropriate in vivo regulation: a novel barrier element that protects the MHC class I gene from silencing and elements within the first two introns that contribute to tissue specific transcription. The barrier element is located in intergenic sequences 3′ to the polyA addition site. It is necessary for stable expression in vivo, but has no effect in transient transfection assays. Accordingly, in both transgenic mice and stably transfected cell lines, truncation of the barrier resulted in transcriptional gene silencing, increased nucleosomal density and decreased histone H3K9/K14 acetylation and H3K4 di-methylation across the gene. Significantly, distinct sequences within the barrier element govern anti-silencing and chromatin modifications. Thus, this novel barrier element functions to maintain transcriptionally permissive chromatin organization and prevent transcriptional silencing of the MHC class I gene, ensuring it is poised to respond to immune signaling
    • …
    corecore