57 research outputs found

    Flow cytometric characterization and clinical outcome of CD4+ T-cell lymphoma in dogs: 67 cases.

    Get PDF
    BackgroundCanine T-cell lymphoma (TCL) is conventionally considered an aggressive disease, but some forms are histologically and clinically indolent. CD4 TCL is reported to be the most common subtype of TCL. We assessed flow cytometric characteristics, histologic features when available, and clinical outcomes of CD4+ TCL to determine if flow cytometry can be used to subclassify this group of lymphomas.ObjectiveTo test the hypothesis that canine CD4+ T-cell lymphoma (TCL) is a homogeneous group of lymphomas with an aggressive clinical course.AnimalsSixty-seven dogs diagnosed with CD4+ TCL by flow cytometry and treated at 1 of 3 oncology referral clinics.MethodsRetrospective multivariable analysis of outcome in canine CD4+ TCL including patient characteristics, treatment, and flow cytometric features.ResultsThe majority of CD4+ TCL were CD45+, expressed low class II MHC, and exhibited an aggressive clinical course independent of treatment regimen (median survival, 159Β days). Histologically, CD4+ TCL were classified as lymphoblastic or peripheral T cell. Size of the neoplastic lymphocytes had a modest effect on both PFI and survival in this group. A small number of CD4+ TCL were CD45- and class II MHC high, and exhibited an apparently more indolent clinical course (median survival not yet reached).Conclusions and clinical importanceAlthough the majority of CD4+ TCL in dogs had uniform clinical and flow cytometric features and an aggressive clinical course, a subset had a unique immunophenotype that predicts significantly longer survival. This finding strengthens the utility of flow cytometry to aid in the stratification of canine lymphoma

    Testing the leadership and organizational change for implementation (LOCI) intervention in substance abuse treatment: A cluster randomized trial study protocol

    Get PDF
    Β© 2017 The Author(s). Background: Evidence-based practice (EBP) implementation represents a strategic change in organizations that requires effective leadership and alignment of leadership and organizational support across organizational levels. As such, there is a need for combining leadership development with organizational strategies to support organizational climate conducive to EBP implementation. The leadership and organizational change for implementation (LOCI) intervention includes leadership training for workgroup leaders, ongoing implementation leadership coaching, 360Β° assessment, and strategic planning with top and middle management regarding how they can support workgroup leaders in developing a positive EBP implementation climate. Methods: This test of the LOCI intervention will take place in conjunction with the implementation of motivational interviewing (MI) in 60 substance use disorder treatment programs in California, USA. Participants will include agency executives, 60 program leaders, and approximately 360 treatment staff. LOCI will be tested using a multiple cohort, cluster randomized trial that randomizes workgroups (i.e., programs) within agency to either LOCI or a webinar leadership training control condition in three consecutive cohorts. The LOCI intervention is 12months, and the webinar control intervention takes place in months 1, 5, and 8, for each cohort. Web-based surveys of staff and supervisors will be used to collect data on leadership, implementation climate, provider attitudes, and citizenship. Audio recordings of counseling sessions will be coded for MI fidelity. The unit of analysis will be the workgroup, randomized by site within agency and with care taken that co-located workgroups are assigned to the same condition to avoid contamination. Hierarchical linear modeling (HLM) will be used to analyze the data to account for the nested data structure. Discussion: LOCI has been developed to be a feasible and effective approach for organizations to create a positive climate and fertile context for EBP implementation. The approach seeks to cultivate and sustain both effective general and implementation leadership as well as organizational strategies and support that will remain after the study has ended. Development of a positive implementation climate for MI should result in more positive service provider attitudes and behaviors related to the use of MI and, ultimately, higher fidelity in the use of MI. Trial registration: This study is registered with Clinicaltrials.gov ( NCT03042832 ), 2 February 2017, retrospectively registered

    The TGF-Ξ²/Smad Repressor TG-Interacting Factor 1 (TGIF1) Plays a Role in Radiation-Induced Intestinal Injury Independently of a Smad Signaling Pathway

    Get PDF
    Despite advances in radiation delivery protocols, exposure of normal tissues during the course of radiation therapy remains a limiting factor of cancer treatment. If the canonical TGF-Ξ²/Smad pathway has been extensively studied and implicated in the development of radiation damage in various organs, the precise modalities of its activation following radiation exposure remain elusive. In the present study, we hypothesized that TGF-Ξ²1 signaling and target genes expression may depend on radiation-induced modifications in Smad transcriptional co-repressors/inhibitors expressions (TGIF1, SnoN, Ski and Smad7). In endothelial cells (HUVECs) and in a model of experimental radiation enteropathy in mice, radiation exposure increases expression of TGF-Ξ²/Smad pathway and of its target gene PAI-1, together with the overexpression of Smad co-repressor TGIF1. In mice, TGIF1 deficiency is not associated with changes in the expression of radiation-induced TGF-Ξ² pathway-related transcripts following localized small intestinal irradiation. In HUVECs, TGIF1 overexpression or silencing has no influence either on the radiation-induced Smad activation or the Smad3-dependent PAI-1 overexpression. However, TGIF1 genetic deficiency sensitizes mice to radiation-induced intestinal damage after total body or localized small intestinal radiation exposure, demonstrating that TGIF1 plays a role in radiation-induced intestinal injury. In conclusion, the TGF-Ξ²/Smad co-repressor TGIF1 plays a role in radiation-induced normal tissue damage by a Smad-independent mechanism

    Tissue level, activation and cellular localisation of TGF-Ξ²1 and association with survival in gastric cancer patients

    Get PDF
    Transforming growth factor-Ξ²1 (TGF-Ξ²1), a tumour suppressing as well as tumour-promoting cytokine, is stored as an extracellular matrix-bound latent complex. We examined TGF-Ξ²1 activation and localisation of TGF-Ξ²1 activity in gastric cancer. Gastric tumours showed increased stromal and epithelial total TGF-Ξ²1 staining by immunohistochemistry. Active TGF-Ξ²1 was present in malignant epithelial cells, but most strongly in smooth muscle actin expressing fibroblasts. Normal gastric mucosa from the same patient showed some staining for total, and little for active TGF-Ξ²1. Active TGF-Ξ²1 levels were determined by ELISA on tissue homogenates, confirming a strong increase in active TGF-Ξ²1 in tumours compared to corresponding normal mucosa. Moreover, high tumour TGF-Ξ²1 activity levels were significantly associated with clinical parameters, including worse survival of the patients. Total and active TGF-Ξ²1 levels were not correlated, suggesting a specific activation process. Of the different proteases tested, active TGF-Ξ²1 levels were only correlated with urokinase activity levels. The correlation with urokinase activity suggests a role for plasmin in TGF-Ξ²1 activation in the tumour microenvironment, resulting in transformation of resident fibroblasts to tumour promoting myofibroblasts. In conclusion we have shown localisation and clinical relevance of TGF-Ξ²1 activity levels in gastric cancer

    Liver-Specific Expression of Transcriptionally Active SREBP-1c Is Associated with Fatty Liver and Increased Visceral Fat Mass

    Get PDF
    The pathogenesis of fatty liver is not understood in detail, but lipid overflow as well as de novo lipogenesis (DNL) seem to be the key points of hepatocyte accumulation of lipids. One key transcription factor in DNL is sterol regulatory element-binding protein (SREBP)-1c. We generated mice with liver-specific over-expression of mature human SREBP-1c under control of the albumin promoter and a liver-specific enhancer (alb-SREBP-1c) to analyze systemic perturbations caused by this distinct alteration. SREBP-1c targets specific genes and causes key enzymes in DNL and lipid metabolism to be up-regulated. The alb-SREBP-1c mice developed hepatic lipid accumulation featuring a fatty liver by the age of 24 weeks under normocaloric nutrition. On a molecular level, clinical parameters and lipid-profiles varied according to the fatty liver phenotype. The desaturation index was increased compared to wild type mice. In liver, fatty acids (FA) were increased by 50% (p<0.01) and lipid composition was shifted to mono unsaturated FA, whereas lipid profile in adipose tissue or serum was not altered. Serum analyses revealed a ∼2-fold (p<0.01) increase in triglycerides and free fatty acids, and a ∼3-fold (p<0.01) increase in insulin levels, indicating insulin resistance; however, no significant cytokine profile alterations have been determined. Interestingly and unexpectedly, mice also developed adipositas with considerably increased visceral adipose tissue, although calorie intake was not different compared to control mice. In conclusion, the alb-SREBP-1c mouse model allowed the elucidation of the systemic impact of SREBP-1c as a central regulator of lipid metabolism in vivo and also demonstrated that the liver is a more active player in metabolic diseases such as visceral obesity and insulin resistance

    Diverse and Active Roles for Adipocytes During Mammary Gland Growth and Function

    Get PDF
    The mammary gland is unique in its requirement to develop in close association with a depot of adipose tissue that is commonly referred to as the mammary fat pad. As discussed throughout this issue, the mammary fat pad represents a complex stromal microenvironment that includes a variety of cell types. In this article we focus on adipocytes as local regulators of epithelial cell growth and their function during lactation. Several important considerations arise from such a discussion. There is a clear and close interrelationship between different stromal tissue types within the mammary fat pad and its adipocytes. Furthermore, these relationships are both stage- and species-dependent, although many questions remain unanswered regarding their roles in these different states. Several lines of evidence also suggest that adipocytes within the mammary fat pad may function differently from those in other fat depots. Finally, past and future technologies present a variety of opportunities to model these complexities in order to more precisely delineate the many potential functions of adipocytes within the mammary glands. A thorough understanding of the role for this cell type in the mammary glands could present numerous opportunities to modify both breast cancer risk and lactation performance
    • …
    corecore