201 research outputs found

    Is Work the Forgotten Occupation?

    Get PDF

    First Measurement of the Tensor Structure Function b1b_1 of the Deuteron

    Full text link
    The \Hermes experiment has investigated the tensor spin structure of the deuteron using the 27.6 GeV/c positron beam of \Hera. The use of a tensor polarized deuteron gas target with only a negligible residual vector polarization enabled the first measurement of the tensor asymmetry \At and the tensor structure function \bd for average values of the Bj{\o}rken variable 0.01<0.450.01<0.45 and of the squared four-momentum transfer 0.5GeV2<5GeV20.5 {\rm GeV^2} <5 {\rm GeV^2}. The quantities \At and \bd are found to be non-zero. The rise of \bd for decreasing values of xx can be interpreted to originate from the same mechanism that leads to nuclear shadowing in unpolarized scattering

    Flavor decomposition of the sea quark helicity distributions in the nucleon from semi-inclusive deep-inelastic scattering

    Full text link
    Double-spin asymmetries of semi-inclusive cross sections for the production of identified pions and kaons have been measured in deep-inelastic scattering of polarized positrons on a polarized deuterium target. Five helicity distributions including those for three sea quark flavors were extracted from these data together with re-analyzed previous data for identified pions from a hydrogen target. These distributions are consistent with zero for all three sea flavors. A recently predicted flavor asymmetry in the polarization of the light quark sea appears to be disfavored by the data.Comment: 5 pages, 3 figure

    Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface

    Full text link
    The nuclear polarization of H2\mathrm{H}_2 molecules formed by recombination of nuclear polarized H atoms on the surface of a storage cell initially coated with a silicon-based polymer has been measured by using the longitudinal double-spin asymmetry in deep-inelastic positron-proton scattering. The molecules are found to have a substantial nuclear polarization, which is evidence that initially polarized atoms retain their nuclear polarization when absorbed on this type of surfac

    Double hadron leptoproduction in the nuclear medium

    Full text link
    First measurement of double-hadron production in deep-inelastic scattering has been measured with the HERMES spectrometer at HERA using a 27.6 GeV positron beam with deuterium, nitrogen, krypton and xenon targets. The influence of the nuclear medium on the ratio of double-hadron to single-hadron yields has been investigated. Nuclear effects are clearly observed but with substantially smaller magnitude and reduced AA-dependence compared to previously measured single-hadron multiplicity ratios. The data are in fair agreement with models based on partonic or pre-hadronic energy loss, while they seem to rule out a pure absorptive treatment of the final state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter

    Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target

    Full text link
    Single-spin asymmetries for semi-inclusive electroproduction of charged pions in deep-inelastic scattering of positrons are measured for the first time with transverse target polarization. The asymmetry depends on the azimuthal angles of both the pion (ϕ\phi) and the target spin axis (ϕS\phi_S) about the virtual photon direction and relative to the lepton scattering plane. The extracted Fourier component \cmpi is a signal of the previously unmeasured quark transversity distribution, in conjunction with the so-called Collins fragmentation function, also unknown. The Fourier component \smpi of the asymmetry arises from a correlation between the transverse polarization of the target nucleon and the intrinsic transverse momentum of quarks, as represented by the previously unmeasured Sivers distribution function. Evidence for both signals is observed, but the Sivers asymmetry may be affected by exclusive vector meson productio

    The Q^2-Dependence of Nuclear Transparency for Exclusive ρ0\rho^0 Production

    Full text link
    Exclusive coherent and incoherent electroproduction of the ρ0\rho^0 meson from 1^1H and 14^{14}N targets has been studied at the HERMES experiment as a function of coherence length (lcl_c), corresponding to the lifetime of hadronic fluctuations of the virtual photon, and squared four-momentum of the virtual photon (Q2-Q^2). The ratio of 14^{14}N to 1^1H cross sections per nucleon, known as nuclear transparency, was found to increase (decrease) with increasing coherence length for coherent (incoherent) ρ0\rho^0 electroproduction. For fixed coherence length, a rise of nuclear transparency with Q2Q^2 is observed for both coherent and incoherent ρ0\rho^0 production, which is in agreement with theoretical calculations of color transparency.Comment: 5 pages, 4 figure

    Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target

    Get PDF
    Single-spin asymmetries in the semi-inclusive production of charged pions in deep-inelastic scattering from transversely and longitudinally polarized proton targets are combined to evaluate the subleading-twist contribution to the longitudinal case. This contribution is significantly positive for (\pi^+) mesons and dominates the asymmetries on a longitudinally polarized target previously measured by \hermes. The subleading-twist contribution for (\pi^-) mesons is found to be small
    corecore