23 research outputs found

    Applying job hazard analysis and William Fine methods on risks identification and assessment of jobs in hot rolling steel, Iran

    Get PDF
    Background and purpose: Comprehensive evaluation of jobs in industries is a practical and effective method that could identify the jobs and industries with negative effects on the environment. This study identified environmental hazards of hot rolling process and assessing their risks. Materials and methods: An observational study was carried out in which identification of human activity and job’s risks in production hall of Kavir Steel Complex was done according to ISO 14001 approaches (pollutant emissions to air, discharges to water, energy consumption, energy released as heat, wastes, side products, etc) by Job Hazard Analysis method (JHA). Then the risks identified were prioritized and assessed using William Fine method. Results: We identified 205 environmental hazards (in 9 groups) associated with production personnel (n= 81), mechanics and maintenance personnel (n= 44), bed personnel (n= 9), personnel of cleaning services (n= 33), and water plant personnel (n= 38). The highest and lowest rate of risks were due to creation and distribution of wastes (n= 73) and corrosion and depreciation of equipment, (n= 1), respectively. Conclusion: The production personnel were mainly responsible for environmental emissions. The leading causes were stress and anxiety about stoppage of production, payment reduction, and lack of awareness and workers and supervisors on environmental issues. © 2017, Mazandaran University of Medical Sciences. All rights reserved

    Evaluations of pH and High Ionic Strength Solution Effect in Cadmium Removal by Zinc Oxide Nanoparticles

    Get PDF
    For human and environmental health protection, it is necessary to remove excess cadmium in industrial wastewaters before discharging them to environment. Some laboratory experimental batch study was done to evaluate the effects of the initial cadmium concentration, adsorbent dose, pH, ionic strength, and contact time on the cadmium removal efficiency by zinc oxide nanoparticles. All tests were performed in 100 ml solution at constant temperature of 25\ub0C and mixing rate of 150 rpm. The residual cadmium concentration in the solution was determined using flame atomic absorption spectroscopy. Statistical analyses were performed on data using SPSS16 software by applying Mann-Whitney and Kruskal-Wallis tests and the result designing graphs were provided using Excel software. Finally, experimental data were analyzed using adsorption isotherm and kinetic equations. The results show that cadmium removal efficiency increases with an increase in the adsorbent dose and contact time and decreases with the increase in initial concentration of cadmium. Furthermore, it is observed that by raising the ionic strength of solution 30 fold, the adsorption rate is increased from 90.7% to 62.3%. Due to regression coefficient ( 650.99), the adsorption process follows Langmuir isotherms model and pseudo-second order equation. Attending to the outcomes, zinc oxide nanoparticles have proper efficiency in the removal of cadmium from aqueous solutions. So, they can be used in treatment of the wastewaters containing cadmium ions. However, its efficiency is deeply dependant on the ion strength and the interactions of other metals in wastewater

    Optimization of photochemical decomposition acetamiprid pesticide from aqueous solutions and effluent toxicity assessment by Pseudomonas aeruginosa BCRC using response surface methodology

    Get PDF
    Contamination of water resources by acetamiprid pesticide is considered one of the main environmental problems. The aim of this study was the optimization of acetamiprid removal from aqueous solutions by TiO2/Fe3O4/SiO2 nanocomposite using the response surface methodology (RSM) with toxicity assessment by Pseudomonas aeruginosa BCRC. To obtain the optimum condition for acetamiprid degradation using RSM and central composite design (CCD). The magnetic TiO2/Fe3O4/SiO2 nanocomposite was synthesized using co-precipitation and sol�gel methods. The surface morphology of the nanocomposite and magnetic properties of the as-synthesized Fe3O4 nanoparticles were characterised by scanning electron microscope and vibrating sample magnetometer, respectively. In this study, toxicity assessment tests have been carried out by determining the activity of dehydrogenase enzyme reducing Resazurin (RR) and colony forming unit (CFU) methods. According to CCD, quadratic optimal model with R2 = 0.99 was used. By analysis of variance, the most effective values of each factor were determined in each experiment. According to the results, the most optimal conditions for removal efficiency of acetamiprid (pH = 7.5, contact time = 65 min, and dose of nanoparticle 550 mg/L) was obtained at 76.55. Effect concentration (EC50) for RR and CFU test were 1.950 and 2.050 mg/L, respectively. Based on the results obtained from the model, predicted response values showed high congruence with actual response values. And, the model was suitable for the experiment�s design conditions. © 2017, The Author(s)

    Optimization of photochemical decomposition acetamiprid pesticide from aqueous solutions and effluent toxicity assessment by Pseudomonas aeruginosa BCRC using response surface methodology

    Get PDF
    Contamination of water resources by acetamiprid pesticide is considered one of the main environmental problems. The aim of this study was the optimization of acetamiprid removal from aqueous solutions by TiO2/Fe3O4/SiO2 nanocomposite using the response surface methodology (RSM) with toxicity assessment by Pseudomonas aeruginosa BCRC. To obtain the optimum condition for acetamiprid degradation using RSM and central composite design (CCD). The magnetic TiO2/Fe3O4/SiO2 nanocomposite was synthesized using co-precipitation and sol�gel methods. The surface morphology of the nanocomposite and magnetic properties of the as-synthesized Fe3O4 nanoparticles were characterised by scanning electron microscope and vibrating sample magnetometer, respectively. In this study, toxicity assessment tests have been carried out by determining the activity of dehydrogenase enzyme reducing Resazurin (RR) and colony forming unit (CFU) methods. According to CCD, quadratic optimal model with R2 = 0.99 was used. By analysis of variance, the most effective values of each factor were determined in each experiment. According to the results, the most optimal conditions for removal efficiency of acetamiprid (pH = 7.5, contact time = 65 min, and dose of nanoparticle 550 mg/L) was obtained at 76.55. Effect concentration (EC50) for RR and CFU test were 1.950 and 2.050 mg/L, respectively. Based on the results obtained from the model, predicted response values showed high congruence with actual response values. And, the model was suitable for the experiment�s design conditions. © 2017, The Author(s)

    Removing Copper from Contaminated Water Using Activated Carbon Sorbent by Continuous Flow

    No full text
    Introduction: A major concern of human being is accumulation and toxicity of heavy metals in their body. Copper is a heavy metal ion that in concentration of 2 mg/l can cause numerous complications. Different treatment methods have been proposed for removing metals from contaminated water by researchers. Among these methods, sorption seems a better method with high removal efficiency. In this study, conditions for removal of copper ions by activated carbon sorbent were studied with continuous flow. Materials & Methods: This was a laboratory – experimental study. A 20mg/l solution of copper ions was prepared and passed through a 5 × 10 cm column with average output rate of 1.85 ml/min. Output of column was sampled every 30 minutes and the remaining amount of copper ion in each sample was measured by flame atomic absorption. Results: The empty bed volume (EBV) was equal to 138 ml. The highest removal efficiency was 99.7 percent at 127 minutes. From equilibrium time, the removal efficiency was constant with time. The adsorption capacity of activated carbon was 0.25mg.g-1. The isotherm study indicated that the sorption data can be obeyed by both Langmuir and Freundlich isotherms (R2>0.95) but Langmuir model had higher agreement with this experimental data (R2= 0.988). Conclusion: The binding of ions to the sorbent in the adsorption process is extremely important. For this column 62.5 minutes after filling was appropriate, so the highest removal efficiency was obtained. Equilibrium time was dependent on the speed of influent through the column in the continuous flow. For selected column, the rate of 1.85 ml/min is a good performance

    Evaluations of pH and High Ionic Strength Solution Effect in Cadmium Removal by Zinc Oxide Nanoparticles

    Get PDF
    For human and environmental health protection, it is necessary to remove excess cadmium in industrial wastewaters before discharging them to environment. Some laboratory experimental batch study was done to evaluate the effects of the initial cadmium concentration, adsorbent dose, pH, ionic strength, and contact time on the cadmium removal efficiency by zinc oxide nanoparticles. All tests were performed in 100 ml solution at constant temperature of 25°C and mixing rate of 150 rpm. The residual cadmium concentration in the solution was determined using flame atomic absorption spectroscopy. Statistical analyses were performed on data using SPSS16 software by applying Mann-Whitney and Kruskal-Wallis tests and the result designing graphs were provided using Excel software. Finally, experimental data were analyzed using adsorption isotherm and kinetic equations. The results show that cadmium removal efficiency increases with an increase in the adsorbent dose and contact time and decreases with the increase in initial concentration of cadmium. Furthermore, it is observed that by raising the ionic strength of solution 30 fold, the adsorption rate is increased from 90.7% to 62.3%. Due to regression coefficient (≥0.99), the adsorption process follows Langmuir isotherms model and pseudo-second order equation. Attending to the outcomes, zinc oxide nanoparticles have proper efficiency in the removal of cadmium from aqueous solutions. So, they can be used in treatment of the wastewaters containing cadmium ions. However, its efficiency is deeply dependant on the ion strength and the interactions of other metals in wastewater

    Equilibrium And Kinetics Study Of Reactive Red 123 Dye Removal From Aqueous Solution By Adsorption On Eggshell

    No full text
    The aim of this study was to determine the equilibrium and kinetics adsorption of reactive red 123 dye (RR 123) from aqueous solution with chicken’s eggshell as an adsorbent. The initial concentrations of reactive red 123 dye were selected in the range of 25 and 50 mg/L. The target adsorbent was prepared in laboratory conditions and pulverized by ASTM standard sieves. Measurement of the adsorbent surface area was carried out via Brunauer-Emmett-Teller isotherm. The experimental data were analyzed with Langmuir, Freundlich and Temkin isotherm models. The results showed that the calcium components were the main constituents of eggshell (around 95% Ca). The experimental adsorption isotherm was in good concordance with Langmuir and Freundlich models (R2>0.90) and based on the Langmuir isotherm the maximum amount of adsorption (qmax) was 1.26 mg/g. Increase of the eggshell dose and the solution temperature beyond 45ºC led to decrease of the adsorbed dye per mass unit of the adsorbent, but increase of the solution pH up to 9 led to the improvement of dye adsorption. The kinetic studies revealed that the adsorption of reactive red 123 was rapid and complied with pseudo-second order kinetic (R2= 0.99), with the kinetic constant of 0.02 g/mg.min

    Application of iron impregnated activated carbon for removal of arsenic from water

    No full text
    The presence of arsenic in drinking water is one of the greatest threats to public health. The aim of this experimental investigation was to study the removal efficiency ofAs(v) from water by application of iron-impregnated activated carbon(Fe-AC). Coating of activated carbon with iron salt was carried out by impregnation method and thermo-chemical reactions with using of 100 mM FeCl 3 solution. The Fe-AC was pulverized using ASTM standard sieves with the range of 16-20 mesh. The solid structure and surface characteristics of Fe-AC were determined using conventional techniques. Batch adsorption experiments were carried out with 300 and 600μg/L arsenate. Langmuir, Freundlich and Dubinin-Radushkevich models were used to describe the isotherm and energy of adsorption. The results of this study showed that 2.5 h contact time was enough to achieve the equilibrium. The adsorption of As(v) had a good compliance with Langmuir model (R 2 = 0.995 ) and the maximum adsorption capacity was obtained as 0.024 mg/g. The results of kinetic studies showed that As(v) adsorption on Fe-AC may be limited by film diffusion step (m=0.26). The mean free energy of adsorption (E) calculated from Dubinin-Radushkevich isotherm was found to be 1.52 kj/mol which implies that the adsorption of As(v) on Fe-AC is a physical adsorption. The results indicated that Fe-AC is one of the suitable adsorbents which can be used for the treatment of arsenic contaminated waters

    Predicting Municipal Solid Waste Generation through Time Series Method (ARMA Technique) and System Dynamics Modeling (Vensim Software)

    No full text
    Background and Objective: Predicting municipal solid waste generation has an important role in solid waste management. The aim of this study was to predict municipal solid waste generation in Isfahan through time series method and system dynamics modeling. Materials and Methods: Verified data of solid waste generation was collected from Waste Management Organization and population information was collected from the National Statistics Center, Iran for the period 1996-2011. Next, the effect of   factors on solid waste generation such as population, urbanization, gross domestic product was investigated. Moreover, the relationship between each of these factors was identified using generalized estimating equation  model. Finally, the quantity of the solid waste generated in Isfahan city was predicted using system dynamics modeling by Vensim software and time series method by ARMA technique. Results: It was found that population and gross domestic product have a significant relationship with the amount of solid waste with P value 0.026 and 0 respectively. The annual average of municipal solid waste generation would be 1501.4 ton/day in 2021 estimated by the time series method and 1436 ton/day estimated by the system dynamics modeling. In addition, average annual growth rate achieved was 3.44%. Conclusion: According to the results obtained, population and gross domestic product have a significant effect on MSW generation. Municipal solid waste generation will increase in future. Increasing solid waste is not the same in different areas and methods. The prediction of the time series method by ARMA technique gives precise results compared with other methods

    Leachate Treatment UsingWet Air Oxidation Processes

    No full text
    "nBackground and Objectives: Wet air oxidation (WAO) is One of the advanced oxidation process which reduce organic matter concentration from industrial wastewater, toxic and non biodegradable substances and, solid waste leachate,etc. In this study the efficiency of wet air oxidation method in leachate treatment generating from Esfahan Composting factory was Evaluated."nMaterial and Methods: The experiment was carried out by adding 1.5 Lit of pretreated leachate sample the steel reactor with the volume of 3L. The reactor then underwent10 bar pressure at different temperature (100, 200 and 300 °C) and various retention time (30, 60 and 90 min). Leachate sample in 18 stages from composting factory in Isfahan in the volume of 20 Lit was taken and the WAO method, was used for pre-treatments. Removal efficiency of COD, BOD, NH4-N, NO3 and TSS were examined."nResults: The results showed that the removal efficiency was more than 35% for COD, 38% for BOD, and 85% for TSS within one hour of reaction. The Maximum removal efficiency obtained in this study were 53.3% for NH4-N and 73.9 % forNO3-N."nConclusion: the results indicate that the reaction temperatures are the most important factors affecting degradation of organic matter. COD and BOD5 removal efficiency by WAO process increased as the time of reaction went up. In addition, BOD5/COD ratios of the effluents, which are generally regarded as an important index of biodegradability of leachate sample, were determined and improved grately as it reached to 84%. TheWAO process presented in this paper is considered an efficient process for pretreatment of leachate, as the COD, BOD5 and NO3 reduction observed in leachate samples
    corecore