CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Optimization of photochemical decomposition acetamiprid pesticide from aqueous solutions and effluent toxicity assessment by Pseudomonas aeruginosa BCRC using response surface methodology
Authors
M. AskarShahi
M.H. Ehrampoush
+5 more
A. Esrafili
M.T. Ghaneian
M. Malakootian
M. Tabatabaei
A. Toolabi
Publication date
1 January 2017
Publisher
Springer Verlag
Abstract
Contamination of water resources by acetamiprid pesticide is considered one of the main environmental problems. The aim of this study was the optimization of acetamiprid removal from aqueous solutions by TiO2/Fe3O4/SiO2 nanocomposite using the response surface methodology (RSM) with toxicity assessment by Pseudomonas aeruginosa BCRC. To obtain the optimum condition for acetamiprid degradation using RSM and central composite design (CCD). The magnetic TiO2/Fe3O4/SiO2 nanocomposite was synthesized using co-precipitation and sol�gel methods. The surface morphology of the nanocomposite and magnetic properties of the as-synthesized Fe3O4 nanoparticles were characterised by scanning electron microscope and vibrating sample magnetometer, respectively. In this study, toxicity assessment tests have been carried out by determining the activity of dehydrogenase enzyme reducing Resazurin (RR) and colony forming unit (CFU) methods. According to CCD, quadratic optimal model with R2 = 0.99 was used. By analysis of variance, the most effective values of each factor were determined in each experiment. According to the results, the most optimal conditions for removal efficiency of acetamiprid (pH = 7.5, contact time = 65 min, and dose of nanoparticle 550 mg/L) was obtained at 76.55. Effect concentration (EC50) for RR and CFU test were 1.950 and 2.050 mg/L, respectively. Based on the results obtained from the model, predicted response values showed high congruence with actual response values. And, the model was suitable for the experiment�s design conditions. © 2017, The Author(s)
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
eprints Iran University of Medical Sciences
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.iums.ac.ir:7651
Last time updated on 10/10/2019