2 research outputs found

    Control of genomic stability by APC/C-Cdh1 and therapeutic implications

    Full text link
    Tesis doctoral inédita, leída en Universidad Autónoma de Madrid, facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 11-11-2013The E3-­‐ubiquitin ligase APC/C-­‐Cdh1 is essential for embryonic endoreduplication but its relevance in the mammalian mitotic cell cycle is still unclear. We show here that genetic ablation of Cdh1 in the developing nervous system results in hypoplastic brain, abnormal development of ependymal cells and hydrocephalus. These defects correlate with increased levels of multiple cell cycle regulators and increased entry into S-­‐phase in neural progenitors, resulting in replicative stress. However, cell division is prevented in the absence of Cdh1 due to the activation the DNA damage response, induction of p53, G2 arrest and apoptotic death. Concomitant ablation of p53 rescues apoptosis but not replicative stress, resulting in premature death due to the presence of damaged neurons throughout the adult brain. Interestingly, partial inhibition of cyclin-­‐dependent kinases (Cdks) rescues the replicative stress and the defective proliferation suggesting that Cdh1 loss results in DNA-­‐damage-­‐like response due to Cdk hyperactivation. In addition, by using a proteomic approach in Cdh1-­‐null cells and mouse tissues, we have identified the kinesin Eg5 and topoisomerase 2α as APC/C-­‐Cdh1 targets involved in the maintenance of genomic stability. The high levels of Eg5 in Cdh1-­‐null cells are accompanied by partial resistance to Eg5 inhibitors such as monastrol. In contrast, Cdh1-­‐null cells display a dramatic sensitivity to Top2α poisons currently used in cancer therapy as a consequence of increased levels of trapped Top2α-­‐DNA complexes. Treatment of human cancer cells with APC/C inhibitors results in increased sensitivity to Top2α poisons revealing a new synthetic lethal interaction that could be used for the optimization of anticancer treatments. These data indicate that a) Inactivation of Cdh1 in vivo results in replicative stress, cell cycle arrest and cell death; and b) APC/C inhibition may have therapeutic use, not only by inhibiting Cdc20 leading to mitotic arrest, but also by altering the levels of Cdh1 substrates (such as Eg5 and Top2α). Thus, targeting the APC/C may result in differential responses (increased resistance or susceptibility) to specific therapeutic agents.La E3-­‐ubiquitina ligasa APC/C-­‐Cdh1 es esencial para la endoreduplicación durante el desarrollo embrionario, pero su relevancia en el ciclo celular mitótico de mamíferos todavía no está clara. La eliminación genética de Cdh1 específicamente en el sistema nervioso resulta en hipoplasia, desarrollo anormal de las células ependimarias e hidrocefalia. Estos defectos correlacionan con un incremento en niveles de reguladores del ciclo celular y en entrada en fase S en los progenitores neurales, que da lugar a estrés replicativo. En ausencia de Cdh1 estas células progenitoras no progresan en el ciclo debido a la activación de la respuesta a daño en el DNA, la inducción de p53, la parada en la fase G2 y la muerte celular programada (apoptosis). La eliminación de p53 previene la apoptosis de las células deficientes para Cdh1, pero no el estrés replicativo. Sin embargo, la inhibición parcial de la actividad de quinasas dependientes de ciclinas (Cdks) rescata el estrés replicativo y los problemas en proliferación, lo que sugiere que la acumulación de daño en el DNA en ausencia de Cdh1 se debe a la hiperactivación de las Cdks. Además, mediante técnicas proteómicas en células y tejidos deficientes para Cdh1, hemos identificado a la kinesina Eg5 y la topoisomerasa 2α como nuevos sustratos de APC/C-­‐Cdh1 implicados en el mantenimiento de la estabilidad genómica. La acumulación de Eg5 en células donde se ha eliminado Cdh1 provoca una resistencia parcial al inhibidor de Eg5 monastrol. Por otro lado, las células deficientes para Cdh1 son especialmente sensibles al inhibidor de topoisomerasa etopósido, actualmente utilizado en tratamientos antitumorales. De hecho, el tratamiento de líneas tumorales humanas con un inhibidor de APC/C incrementa la sensibilidad a inhibidores de topoisomerasa 2. Estos datos muestran que: a) La inactivación de Cdh1 in vivo provoca estrés replicativo, parada del ciclo y muerte celular; and b) La inhibición de APC/C puede tener aplicaciones terapéuticas, no sólo a través de la inducción de parada en mitosis por bloqueo de la actividad de cdc20, sino también mediante el aumento de niveles de sustratos de Cdh1 (tales como Eg5 o Top2α) que modulan la respuesta a distintos tratamientos contra el cancer

    A synthetic lethal interaction between APC/C and topoisomerase poisons uncovered by proteomic screens.

    No full text
    The Anaphase-promoting complex/cyclosome (APC/C) cofactor Cdh1 modulates cell proliferation by targeting multiple cell-cycle regulators for ubiquitin-dependent degradation. Lack of Cdh1 results in structural and numerical chromosome aberrations, a hallmark of genomic instability. By using a proteomic approach in Cdh1-null cells and mouse tissues, we have identified kinesin Eg5 and topoisomerase 2α as Cdh1 targets involved in the maintenance of genomic stability. These proteins are ubiquitinated and degraded through specific KEN and D boxes in a Cdh1-dependent manner. Whereas Cdh1-null cells display partial resistance to Eg5 inhibitors such as monastrol, lack of Cdh1 results in a dramatic sensitivity to Top2α poisons as a consequence of increased levels of trapped Top2α-DNA complexes. Chemical inhibition of the APC/C in cancer cells results in increased sensitivity to Top2α poisons. This work identifies in vivo targets of the mammalian APC/C-Cdh1 complex and reveals synthetic lethal interactions of relevance in anticancer treatments.We thank Angeles Almeida, Thomas U. Mayer, William T. Beck, Anthony A. Hyman, Jan-Michael Peters, Eusebio Manchado, and Scott Lowe for reagents. M. E., A.J.L.-C., and M.A.-F. were supported by the Spanish Ministry of Education, Culture and Sports, the AECC Scientific Foundation, and the EU-PEOPLE programme, respectively. Work in the O.F.-C. laboratory was supported by grants from the Spanish Ministry of Economy and Competitiveness (MINECO; SAF2011-23753), the Association for International Cancer Research (120229), the Howard Hughes Medical Institute, and the European Research Council (ERC-210520). Work in the H.Y. laboratory was funded by grants from Marie Curie Cancer Care and Cancer Research UK. Work in M.M.'s laboratory was funded by grants from the Foundation Ramon Areces, MINECO (SAF2012-38215), the OncoCycle Programme (S2010/BMD-2470) from the Comunidad de Madrid, and the European Union Seventh Framework Programme (MitoSys project; HEALTH-F5-2010-241548).S
    corecore