307 research outputs found

    Co-evolutionnary network approach to cultural dynamics controlled by intolerance

    Full text link
    Starting from Axelrod's model of cultural dissemination, we introduce a rewiring probability, enabling agents to cut the links with their unfriendly neighbors if their cultural similarity is below a tolerance parameter. For low values of tolerance, rewiring promotes the convergence to a frozen monocultural state. However, intermediate tolerance values prevent rewiring once the network is fragmented, resulting in a multicultural society even for values of initial cultural diversity in which the original Axelrod model reaches globalization

    Timing interactions in social simulations: The voter model

    Full text link
    The recent availability of huge high resolution datasets on human activities has revealed the heavy-tailed nature of the interevent time distributions. In social simulations of interacting agents the standard approach has been to use Poisson processes to update the state of the agents, which gives rise to very homogeneous activity patterns with a well defined characteristic interevent time. As a paradigmatic opinion model we investigate the voter model and review the standard update rules and propose two new update rules which are able to account for heterogeneous activity patterns. For the new update rules each node gets updated with a probability that depends on the time since the last event of the node, where an event can be an update attempt (exogenous update) or a change of state (endogenous update). We find that both update rules can give rise to power law interevent time distributions, although the endogenous one more robustly. Apart from that for the exogenous update rule and the standard update rules the voter model does not reach consensus in the infinite size limit, while for the endogenous update there exist a coarsening process that drives the system toward consensus configurations.Comment: Book Chapter, 23 pages, 9 figures, 5 table

    Efficacy of different antifouling treatments for seawater cooling systems

    Get PDF
    In an industrial seawater cooling system, the effects of three different antifouling treatments, viz. sodium hypochlorite (NaClO), aliphatic amines (Mexel1432) and UV radiation, on the characteristics of the fouling formed were evaluated. For this study a portable pilot plant, as a side-stream monitoring system and seawater cooling system, was employed. The pilot plant simulated a power plant steam condenser, having four titanium tubes under different treatment patterns, where fouling progression could be monitored. The nature of the fouling obtained was chiefly inorganic, showing a clear dependence on the antifouling treatment employed. After 72 days the tubes under treatment showed a reduction in the heat transfer resistance (R) of around 70% for NaClO, 48% for aliphatic amines and 55% for UV, with respect to the untreated tube. The use of a logistic model was very useful for predicting the fouling progression and the maximum asymptotic value of the increment in the heat transfer resistance (DRmax). The apparent thermal conductivity (l) of the fouling layer showed a direct relationship with the percentage of organic matter in the collected fouling. The characteristics and mode of action of the different treatments used led to fouling with diverse physicochemical properties

    The Complex Ginzburg-Landau Equation in the Presence of Walls and Corners

    Get PDF
    We investigate the influence of walls and corners (with Dirichlet and Neumann boundary conditions) in the evolution of twodimensional autooscillating fields described by the complex Ginzburg-Landau equation. Analytical solutions are found, and arguments provided, to show that Dirichlet walls introduce strong selection mechanisms for the wave pattern. Corners between walls provide additional synchronization mechanisms and associated selection criteria. The numerical results fit well with the theoretical predictions in the parameter range studied.Comment: 10 pages, 9 figures; for related work visit http://www.nbi.dk/~martine

    Fragmentation transition in a coevolving network with link-state dynamics

    Get PDF
    We study a network model that couples the dynamics of link states with the evolution of the network topology. The state of each link, either A or B, is updated according to the majority rule or zero-temperature Glauber dynamics, in which links adopt the state of the majority of their neighboring links in the network. Additionally, a link that is in a local minority is rewired to a randomly chosen node. While large systems evolving under the majority rule alone always fall into disordered topological traps composed by frustrated links, any amount of rewiring is able to drive the network to complete order, by relinking frustrated links and so releasing the system from traps. However, depending on the relative rate of the majority rule and the rewiring processes, the system evolves towards different ordered absorbing configurations: either a one-component network with all links in the same state or a network fragmented in two components with opposite states. For low rewiring rates and finite size networks there is a domain of bistability between fragmented and non-fragmented final states. Finite size scaling indicates that fragmentation is the only possible scenario for large systems and any nonzero rate of rewiring.Comment: 10 pages, 13 figure

    Robustness of cultural communities in an open-ended Axelrod's model

    Get PDF
    We consider an open-ended set of cultural features in the Axelrod's model of cultural dissemination. By replacing the features in which a high degree of consensus is achieved by new ones, we address here an essential ingredient of societies: the evolution of topics as a result of social dynamics and debate. Our results show that, once cultural clusters have been formed, the introduction of new topics into the social debate has little effect on them, but it does have a significant influence on the cultural overlap. Along with the Monte-Carlo simulations, we derive and numerically solve an equation for the stationary cultural overlap based on a mean-field approach. Although the mean-field analysis reproduces qualitatively the characteristic phase transition of the Axelrod's model, it underestimates the cultural overlap, highlighting the role of the local interactions in the Axelrod's dynamics, as well as the correlations between the different cultural features.Comment: 6 pages and 5 figure

    Rank-dependent deactivation in network evolution

    Full text link
    A rank-dependent deactivation mechanism is introduced to network evolution. The growth dynamics of the network is based on a finite memory of individuals, which is implemented by deactivating one site at each time step. The model shows striking features of a wide range of real-world networks: power-law degree distribution, high clustering coefficient, and disassortative degree correlation.Comment: 5 pages, 5 figures, RevTex

    The noisy voter model on complex networks

    Get PDF
    We propose a new analytical method to study stochastic, binary-state models on complex networks. Moving beyond the usual mean-field theories, this alternative approach is based on the introduction of an annealed approximation for uncorrelated networks, allowing to deal with the network structure as parametric heterogeneity. As an illustration, we study the noisy voter model, a modification of the original voter model including random changes of state. The proposed method is able to unfold the dependence of the model not only on the mean degree (the mean-field prediction) but also on more complex averages over the degree distribution. In particular, we find that the degree heterogeneity ---variance of the underlying degree distribution--- has a strong influence on the location of the critical point of a noise-induced, finite-size transition occurring in the model, on the local ordering of the system, and on the functional form of its temporal correlations. Finally, we show how this latter point opens the possibility of inferring the degree heterogeneity of the underlying network by observing only the aggregate behavior of the system as a whole, an issue of interest for systems where only macroscopic, population level variables can be measured.Comment: 28 pages, 9 figure
    corecore