211 research outputs found

    Effect of age on the pharmacokinetics of busulfan in patients undergoing hematopoietic cell transplantation; an alliance study (CALGB 10503, 19808, and 100103)

    Get PDF
    Older patients with acute myeloid leukemia (AML) and myelodysplastic syndrome have often been excluded from myeloablative-conditioning regimens containing busulfan because of non-disease-related morbidity and mortality. We hypothesized that busulfan clearance (BuCL) in older patients (\u3e 60 years) would be reduced compared to that in younger patients, potentially explaining observed differences in busulfan tolerability. AML patients in three CALGB hematopoietic cell transplantation studies were treated with a conditioning regimen using IV busulfan, dosed at 0.8 mg/kg. Plasma busulfan concentrations were determined by LC-MS and analyzed by non-compartmental methods. BuCL was normalized to actual (ABW), ideal (IBW), or corrected (CBW) body weight (kg). Differences in BuCL between age groups were examined using the Wilcoxon rank sum test. One hundred and eighty-five patients were accrued; 174 provided useable pharmacokinetic data. Twenty-nine patients a parts per thousand yen60 years old (median 66; range 60-74) had a significantly higher BuCL versus those \u3c 60 years old (median 50; range 18-60): BuCL 236 versus 168 mL/min, p = 0.0002; BuCL/ABW 3.0 versus 2.1 mL/min/kg, p = 0.0001; BuCL/IBW 3.8 versus 2.6 mL/min/kg, p = 0.0035; BuCL/CBW 3.4 versus 2.6 mL/min/kg, p = 0.0005. Inter-patient variability in clearance (CV %) was up to 48 % in both age groups. Phenytoin administration, a potential confounder, did not affect BuCL, regardless of weight normalization (p \u3e 0.34). Contrary to our hypothesis, BuCL was significantly higher in older patients compared to younger patients in these studies and does not explain the previously reported increase in busulfan toxicity observed in older patients

    Enhancement of Cisplatin [ cis

    Full text link

    Effects of high-amylose maize starch and butyrylated high-amylose maize starch on azoxymethane-induced intestinal cancer in rats

    Get PDF
    Colorectal cancer (CRC) is a major cause of death worldwide. Studies suggest that dietary fibre offers protection perhaps by increasing colonic fermentative production of butyrate. This study examined the importance of butyrate by investigating the effects of resistant starch (RS) and butyrylated-RS on azoxymethane (AOM)-induced CRC in rats. Four groups (n = 30 per group) of Sprague–Dawley rats were fed AIN-93G-based diets containing a standard low-RS maize starch (LAMS), LAMS + 3% tributyrin (LAMST), 10% high-amylose maize starch (HAMS) and 10% butyrylated HAMS (HAMSB) for 4 weeks. Rats were injected once weekly for 2 weeks with 15 mg/kg AOM, maintained on diets for 25 weeks and then killed. Butyrate concentrations in large bowel digesta were higher in rats fed HAMSB than other groups (P < 0.001); levels were similar in HAMS, LAMS and LAMST groups. The proportion of rats developing tumours were lower in HAMS and HAMSB than LAMS (P < 0.05), and the number of tumours per rat were lower in HAMSB than LAMS (P < 0.05). Caecal digesta butyrate pools and concentrations were negatively correlated with tumour size (P < 0.05). Hepatic portal plasma butyrate concentrations were higher (P < 0.001) in the HAMSB compared with other groups and negatively correlated with tumour number per rat (P < 0.009) and total tumour size for each rat (P = 0.05). HAMSB results in higher luminal butyrate than RS alone or tributyrin. This is associated with reduced tumour incidence, number and size in this rat model of CRC supporting the important protective role of butyrate. Interventional strategies designed to maximize luminal butyrate may be of protective benefit in humans

    Phenylbutyrate Counteracts Shigella Mediated Downregulation of Cathelicidin in Rabbit Lung and Intestinal Epithelia: A Potential Therapeutic Strategy

    Get PDF
    BACKGROUND: Cathelicidins and defensins are endogenous antimicrobial peptides (AMPs) that are downregulated in the mucosal epithelia of the large intestine in shigellosis. Oral treatment of Shigella infected rabbits with sodium butyrate (NaB) reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18) in the large intestinal epithelia. AIMS: To develop novel regimen for treating infectious diseases by inducing innate immunity, we selected sodium 4-phenylbutyrate (PB), a registered drug for a metabolic disorder as a potential therapeutic candidate in a rabbit model of shigellosis. Since acute respiratory infections often cause secondary complications during shigellosis, the systemic effect of PB and NaB on CAP-18 expression in respiratory epithelia was also evaluated. METHODS: The readouts were clinical outcomes, CAP-18 expression in mucosa of colon, rectum, lung and trachea (immunohistochemistry and real-time PCR) and release of the CAP-18 peptide/protein in stool (Western blot). PRINCIPAL FINDINGS: Significant downregulation of CAP-18 expression in the epithelia of rectum and colon, the site of Shigella infection was confirmed. Interestingly, reduced expression of CAP-18 was also noticed in the epithelia of lung and trachea, indicating a systemic effect of the infection. This suggests a causative link to acute respiratory infections during shigellosis. Oral treatment with PB resulted in reduced clinical illness and upregulation of CAP-18 in the epithelium of rectum. Both PB and NaB counteracted the downregulation of CAP-18 in lung epithelium. The drug effect is suggested to be systemic as intravenous administration of NaB could also upregulate CAP-18 in the epithelia of lung, rectum and colon. CONCLUSION: Our results suggest that PB has treatment potential in human shigellosis. Enhancement of CAP-18 in the mucosal epithelia of the respiratory tract by PB or NaB is a novel discovery. This could mediate protection from secondary respiratory infections that frequently are the lethal causes in dysentery

    Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker

    Get PDF
    BackgroundHistone deacetylase inhibitors (HDACi) can sensitise cancer cells to topoisomerase inhibitors by increasing their access and binding to DNA.MethodsThis phase I trial was designed to determine the toxicity profile, tolerability, and recommended phase II dose of escalating doses of the HDACi vorinostat, with weekly doxorubicin.ResultsIn total, 32 patients were treated; vorinostat was dosed at 400, 600, 800, or 1000 mg day(-1) on days 1-3, followed by doxorubicin (20 mg m(-2)) on day 3 for 3 of 4 weeks. Maximal tolerated dose was determined to be 800 mg day(-1) of vorinostat. Dose-limiting toxicities were grade 3 nausea/vomiting (two out of six) and fatigue (one out of six) at 1000 mg day(-1). Non-dose-limiting grade 3/4 toxicities included haematological toxicity and venous thromboembolism. Antitumor activity in 24 evaluable patients included two partial responses (breast and prostate cancer). Two patients with melanoma had stable disease for &gt; or =8 months. Histone hyperacetylation changes in peripheral blood mononuclear and tumour cells were comparable. Histone hyperacetylation seemed to correlate with pre-treatment HDAC2 expression.ConclusionThese findings suggest that vorinostat can be combined with weekly doxorubicin in this schedule at a dose of 800 mg day(-1). The HDAC2 expression may be a marker predictive of HDAC inhibition. Antitumor activity of this regimen in breast cancer, prostate cancer, and melanoma seems interesting

    Chronic treatment with 17-DMAG improves balance and coordination in a new mouse model of Machado-Joseph disease

    Get PDF
    Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disease currently with no treatment. We describe a novel mouse model of MJD which expresses mutant human ataxin-3 at near endogenous levels and manifests MJD-like motor symptoms that appear gradually and progress over time. CMVMJD135 mice show ataxin-3 intranuclear inclusions in the CNS and neurodegenerative changes in key disease regions, such as the pontine and dentate nuclei. Hsp90 inhibition has shown promising outcomes in some neurodegenerative diseases, but nothing is known about its effects in MJD. Chronic treatment of CMVMJD mice with Hsp90 inhibitor 17-DMAG resulted in a delay in the progression of their motor coordination deficits and, at 22 and 24 weeks of age, was able to rescue the uncoordination phenotype to wild-type levels; in parallel, a reduction in neuropathology was observed in treated animals. We observed limited induction of heat-shock proteins with treatment, but found evidence that 17-DMAG may be acting through autophagy, as LC3-II (both at mRNA and protein levels) and beclin-1 were induced in the brain of treated animals. This resulted in decreased levels of the mutant ataxin-3 and reduced intranuclear aggregation of this protein. Our data validate this novel mouse model as a relevant tool for the study of MJD pathogenesis and for pre-clinical studies, and show that Hsp90 inhibition is a promising therapeutic strategy for MJD.We would like to thank to Dr. Henry Paulson for providing the anti-ataxin-3 serum, Dr. Monica Sousa for the pCMV vector and to Eng. Lucilia Goreti Pinto, Lu s Martins, Miguel Carneiro and Celina Barros for technical assistance. This work was supported by Fundacao para a Ciencia e Tecnologia through the projects FEDER/FCT, POCI/SAU-MMO/60412/2004 and PTDC/SAU-GMG/64076/2006. This work was supported by Fundacao para a Ciencia e Tecnologia through fellowships SFRH/BPD/91562/2012 to A.S-F., SFRH/BD/78388/2011 to S. D-S., SFRH/BD/51059/2010 to A.N-C., and SFRH/BPD/79469/2011 to A.T-C.

    A Switching Mechanism in Doxorubicin Bioactivation Can Be Exploited to Control Doxorubicin Toxicity

    Get PDF
    Although doxorubicin toxicity in cancer cells is multifactorial, the enzymatic bioactivation of the drug can significantly contribute to its cytotoxicity. Previous research has identified most of the components that comprise the doxorubicin bioactivation network; however, adaptation of the network to changes in doxorubicin treatment or to patient-specific changes in network components is much less understood. To investigate the properties of the coupled reduction/oxidation reactions of the doxorubicin bioactivation network, we analyzed metabolic differences between two patient-derived acute lymphoblastic leukemia (ALL) cell lines exhibiting varied doxorubicin sensitivities. We developed computational models that accurately predicted doxorubicin bioactivation in both ALL cell lines at high and low doxorubicin concentrations. Oxygen-dependent redox cycling promoted superoxide accumulation while NADPH-dependent reductive conversion promoted semiquinone doxorubicin. This fundamental switch in control is observed between doxorubicin sensitive and insensitive ALL cells and between high and low doxorubicin concentrations. We demonstrate that pharmacological intervention strategies can be employed to either enhance or impede doxorubicin cytotoxicity in ALL cells due to the switching that occurs between oxygen-dependent superoxide generation and NADPH-dependent doxorubicin semiquinone formation

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
    corecore