222 research outputs found

    Cochlear implant: indications, contraindications and complications

    Get PDF
    Cochlear implant (CI) is a surgically implanted electronic device that provides a sense of sound to a person who is profoundly deaf. CI represents the current treatment for patients affected by profound sensorineu- ral hearing loss (SNHL). At first times, only deaf adults were considered to be candidates for a CI; however, with the development of technology and gained experience by pshycians, indications for cochlear implan- tation have been expanded. Today, CIs are implanted also in children and broader indications are followed. There are, however, a number of patients who are potential candidates for CI but do not completely fulfill the current indications. Residual hearing and duration of deafness represent prognostic indicators for CI per- formance; however, prelingually deafened adults and children with residual hearing are still point at issue. Anatomical variations such as cochlear malformation, ossification and chronic otitis media still represent a contraindication to CI for some surgeons. Although the technology for cochlear implant surgery is advanc- ing everyday, there may be several complications related to the device or operation and some of them can be healed only with medical therapy but some are serious enough to process to reimplantation. In this arti- cle the indications and contraindications for cochlear implant candidates and complications that may occur during or after the operation were reviewed under the light of the literature

    Group Scheduling in a Cellular Manufacturing Shop to Minimise Total Tardiness and nT: a Comparative Genetic Algorithm and Mathematical Modelling Approach

    Get PDF
    In this paper, family and job scheduling in a cellular manufacturing shop is addressed where jobs have individual due dates. The objectives are to minimise total tardiness and the number of tardy jobs. Family splitting among cells is allowed but job splitting is not. Two optimisation methods are employed in order to solve this problem, namely mathematical modelling (MM) and genetic algorithm (GA). The results showed that GA found the optimal solution for most of the problems with high frequency. Furthermore, the proposed GA is efficient compared to the MM especially for larger problems in terms of execution times. Other critical aspects of the problem such as family preemption only, impact of family splitting on common due date scenarios and dual objective scenarios are also solved. In short, the proposed comparative approach provides critical insights for the group scheduling problem in a cellular manufacturing shop with distinctive cases

    Deformation Rate and Temperature Sensitivity in TWIP/TRIP VCrFeCoNi Multi-Principal Element Alloy

    Get PDF
    High-entropy alloys (HEAs) and medium-entropy alloys (MEAs), also sometimes referred to as multi-principal element alloys (MPEAs), present opportunities to develop new materials with outstanding mechanical properties. Through the careful selection of constituent elements along with optimized thermal processing for proper control of structure, grain size, and deformation mechanisms, many of the newly developed HEA systems exhibit superior strength and ductility levels across a wide range of temperatures, particularly at cryogenic deformation temperatures. Such a remarkable response has been attributed to the hardening capacity of many MPEAs that is achieved through the activation of deformation twinning. More recent compositions have considered phase transforming systems, which have the potential for enhanced strengthening and therefore high strength and ductility levels. However, the strain rate sensitivity of such transforming MPEAs is not well understood and requires further investigation. In this study, the tensile properties of the non-equiatomic V10Cr10Fe45Co30Ni5 MPEA were investigated at different deformation rates and temperatures ranging from 77 K (-196 degrees C) to 573 K (300 degrees C). Depending on the deformation temperature, the considered MPEA exhibits plasticity through either crystallographic slip, deformation twinning, or solid-state phase transformation. At 300 degrees C, only slip-mediated plasticity was observed for all the considered deformation rates. Deformation twinning was detected in samples deformed at room temperature, while face-centered cubic to body-centered cubic phase transformation became more favorable at cryogenic deformation temperatures. The trends are nonlinear with twinning-induced plasticity (TWIP) favored at the intermediate deformation rate, while transformation-induced plasticity (TRIP) was observed, although limited, only at the slowest deformation rate. For all the considered deformation rates at cryogenic deformation temperature, a significant TRIP activity was always detected. The extent of TRIP, however, was dependent on the deformation rate. Increasing the deformation rate is not conducive to TRIP and thus hinders the hardening capacity

    Andreev bound states in superconductor/ferromagnet point contact Andreev reflection spectra

    Get PDF
    As charge carriers traverse a single superconductor ferromagnet interface, they experience an additional spin-dependent phase angle that results in spin mixing and the formation of a bound state called the Andreev bound state. Here we explore whether point contact Andreev reflection can be used to detect the Andreev bound state and, within the limits of our experiment, we extract the resulting spin mixing angle. By examining spectra taken from L a 1.15 S r 1.85 M n 2 O 7 − Pb junctions, together with a compilation of literature data on highly spin polarized systems, we suggest that the existence of the Andreev bound state would resolve a number of long standing controversies in the literature of Andreev reflection, as well as defining a route to quantify the strength of spin mixing at superconductor-ferromagnet interfaces. Intriguingly, we find that for high transparency junctions, the spin mixing angle appears to take a relatively narrow range of values across all the samples studied. The ferromagnets we have chosen to study share a common property in terms of their spin arrangement, and our observations may point to the importance of this property in determining the spin mixing angle under these circumstances

    Magnetic field dependence of the proximity-induced triplet superconductivity at ferromagnet/superconductor interfaces

    Get PDF
    Long-ranged superconductor proximity effects recently found in superconductor-ferromagnetic (S-F) systems are generally attributed to the formation of triplet-pairing correlations due to various forms of magnetic inhomogeneities at the S-F interface. In order to investigate this conjecture within a single F layer coupled to a superconductor, we performed scanning tunneling spectroscopy on bilayers of La2/3Ca1/3MnO3 (LCMO) ferromagnetic thin-films grown on high temperature superconducting films of YBa2Cu3O7- (YBCO) or Pr1.85Ca0.15CuO4 (PCCO) under various magnetic fields. We find a strong correlation between the magnitude of superconductor-related spectral features measured on the LCMO layer and the degree of magnetic inhomogeneity controlled by the external magnetic field. This corroborates theoretical predictions regarding the role played by magnetic inhomogeneities in inducing triplet-pairing at S-F interfaces.This research was supported in parts by the joint German-Israeli DIP Project (G.K. and O.M.), the United States-Israel Binational Science Foundation (O.M.), the Harry de Jur Chair in Applied Science (O.M.), the Karl Stoll Chair in advanced materials at the Technion (G.K.), the Leverhulme Trust through an International Network Grant (J.W.A.R., M.G.B. and O.M.) and the Royal Society (J.W.A.R.).This is the accepted manuscript version. The final published version is available from the publishers at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.180506. © 2014 AP

    Inverse barocaloric effects in ferroelectric BaTiO<inf>3</inf> ceramics

    Get PDF
    We use calorimetry to identify pressure-driven isothermal entropy changes in ceramic samples of the prototypical ferroelectric BaTiO3. Near the structural phase transitions at ∼400 K (cubic-tetragonal) and ∼280 K (tetragonal-orthorhombic), the inverse barocaloric response differs in sign and magnitude from the corresponding conventional electrocaloric response. The differences in sign arise due to the decrease in unit-cell volume on heating through the transitions, whereas the differences in magnitude arise due to the large volumetric thermal expansion on either side of the transitions.European Research Council (Starting Grant ID: 680032), Engineering and Physical Sciences Research Council (Grant ID: EP/M003752/1), CICyT (Spain) (Project Nos. MAT2013-40590-P and FIS2014-54734-P), DGU (Catalonia) (Project No. 2014SGR00581), SUR (DEC Catalonia), AGAUR, FNR Luxembourg through COFERMAT project, Royal SocietyThis is the final version of the article. It first appeared from American Institute of Physics Publishing via http://dx.doi.org/10.1063/1.496159

    Protective Potential of Antioxidant Enzymes as Vaccines for Schistosomiasis in a Non-Human Primate Model

    Get PDF
    Schistosomiasis remains a major cause of morbidity in the world. The challenge today is not so much in the clinical management of individual patients, but rather in population-based control of transmission in endemic areas. Recent large-scale efforts aimed at limiting schistosomiasis have produced limited success. There is an urgent need for complementary approaches, such as vaccines. We demonstrated previously that anti-oxidant enzymes such as Cu-Zn superoxide dismutase (SOD) and glutathione S peroxidase (GPX), when administered as DNA-based vaccines induced significant levels of protection in inbred mice, greater than the target 40% reduction in worm burden compared to controls set as a minimum by the WHO. These results led us to investigate if immunization of non-human primates with antioxidants would stimulate an immune response that could confer protection, as a prelude for human trials. Issues of vaccine toxicity and safety that were difficult to address in mice were also investigated. All baboons in the study were examined clinically throughout the study and no adverse reactions occurred to the immunization. When our outbred baboons were vaccinated with two different formulations of SOD (SmCT-SOD and SmEC-SOD) or one of GPX (SmGPX), they showed a reduction in worm number to varying degrees, when compared with the control group. More pronounced, vaccinated animals showed decreased bloody diarrhea, days of diarrhea and egg excretion (transmission), as well as reduction of eggs in the liver tissue and in the large intestine (pathology) compared to controls. Specific IgG antibodies were present in sera after immunizations and 10 weeks after challenge infection compared to controls. PBMC, mesenteric and inguinal node cells from vaccinated animals proliferated and produced high levels of cytokines and chemokines in response to crude and recombinant antigens compared with controls. These data demonstrate the potential of antioxidants as vaccine candidates
    • …
    corecore