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Group Scheduling in a Cellular Manufacturing Shop to Minimize Total Tardiness 
and nT: A Comparative Genetic Algorithm and Mathematical Modeling Approach 

 

Abstract 

In this paper, family and job scheduling in a cellular manufacturing environment is considered. Each job is 
assumed to have their own individual due regardless of what family they belong to. The performance measures 
considered are to minimize total tardiness and the number of tardy jobs. Family splitting among cells is allowed 
but job splitting is not. Even though family splitting increases the number of setups and thus reduces productive 
time, it increases the chances of meeting individual job due dates, which often causes late delivery.  Two 
optimization methods are employed in order to solve this problem, namely Mathematical Modeling and Genetic 
Algorithm (GA). The results showed that GA found the optimal solution for most of the problems tested with a 
high frequency.  Furthermore, the proposed GA is efficient compared to the mathematical model especially for 
larger problems in terms of execution times. Other critical variations of problem such as family preemption only, 
impact of family splitting on common due date scenarios are added to the math model and finally dual objective 
solutions are provided and comparatively discussed. The allowance of family splitting is found to be beneficial 
for both common and individual due date scenarios with short to moderate setup times. The proposed 
comparative approach provides critical insights for the group scheduling problem in a cellular manufacturing 
shop with a case study 

Keywords: Cellular Manufacturing, Cell Loading, Family and Job Sequencing, Mathematical Modeling, Genetic 
Algorithm 
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1. Introduction 

A Cellular Manufacturing System (CMS) is designed to produce moderate to high variety of products with low 
to moderate demand (Egilmez et al. 2011). CMS consists of manufacturing cell(s) with dissimilar machines 
needed to produce product families. Generally, the products grouped together form a product family. The 
benefits of CMS are lower setup, smaller lot sizes, lower  work-in-process inventory and less space, reduced 
material handling, and shorter throughput time, simpler work flow (Suresh and Kay 1998) (Soolaki and Izadi 
2013). Cell Loading deals with allocation of products to cells in a multi-cell environment. This allocation is done 
considering demand, processing times and due dates of the products as well as the capability and capacity of 
the cells (Süer et al. 1995; Suer et al. 1999). One of the critical objectives is to form product familes and 
manufacturing cells that will work efficiently and yield the maximum productivity (Manimaran et al. 2010). 
Additionally, family sequencing is the task of determining the order by which product families will be processed 
in a particular cell. Family sequence is determined either after cell loading is completed or during cell loading 
process. In this paper, family splitting is allowed, i.e., some of the jobs of a family can be processed in a different 
cell and/or at a different point in time in the same cell (i.e., family preemption). Family setup is required and 
therefore each time a new family starts in a cell, a new setup is performed. Finally, Family Scheduling consists 
of determining start times and completion times of the product families (one segment or multiple segments) 
and job scheduling determines the start and completion times of individual jobs based on the family sequence 
established. Typically in a complex cellular system, the researchers need to address cell loading, family 
sequencing, family scheduling, and job scheduling tasks to obtain satisfactory results in terms of selected 
performance measures.   

In a typical cellular manufacturing shop, the bottleneck machine is treated as single machine to solve the 
scheduling problem since the production rate is driven by the bottleneck machine and unit peace of flow is the 
main principle (Egilmez and Süer 2013). Therefore any improvement on the bottleneck machine can 
significantly contribute to the overall performance of the manufacturing system. In this context, any earliness 
or tardiness of the jobs is not desirable since earliness yields extra inventory, costs and sometimes misuse of 
resources, and tardiness deteriorates reputation of the company and leads to lost sales and rush shipping costs, 
and loss of goodwill. Earliness is especially an important problem for companies producing perishable items 
since the products lose some part of their shelf life before being shipped to the retailers or customers. 
Minimizing total earliness and total tardiness is especially important for companies working in just-in-time 
concept which aims to deliver the products as close to their due dates as possible (Arnold 1998). And, the impact 
of set-up time is yet another critical factor that needs to be addressed, when dealing with scheduling problems 
in manufacturing environments (Vanchipura and Sridharan 2013). 

In this study, the performance measure considered is Total Tardiness (TT) and the objective is to minimize TT. 
If a product is completed after its due date, then it is considered a tardy product. If product is completed before 
its due date, then the tardiness for this product is zero (early or on-time product). As a result, the tardiness for 
a product takes a value of zero or positive, Ti = max {0, ci - di}; where Ti is the tardiness for product (i), ci is the 
completion time of product (i), and di is the due date for product (i). Even though the case study presented here 
is based on a shoe manufacturing company, the work done is applicable to many other cellular systems. The 
overall objective of this study is to solve cell loading, family and job scheduling problem in such a multi-cell 
environment to minimize the objectives such as total tardiness, the number of jobs. The researchers propose a 
mathematical model (MM) and a GA approach to solve this complex problem. An experiment is carried out using 
both approaches and later the results are compared. Finally, different versions of the problem are discussed and 
experiment results are also reported based on math model formulation.  
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2. Literature Review 

The literature related to production control aspects of cellular manufacturing can be considered as narrow 
compared to cell formation in other words design aspects of cellular manufacturing. In terms of cellular control, 
cell loading (Suer et al., 1995), job-product sequencing and scheduling (Suer et al, 1999), manpower allocation 
to manufacturing cells (Egilmez et al. 2014) can be considered as the main tasks of control, which are typically 
applied either based on the previously formed or designed cellular shop or simultaneously. Since this paper 
addresses specific type of cell loading and job scheduling problem where injection molding machine (thus the 
operation) is the bottleneck and a cellular shop is present; only related works from the literature are aimed to 
be addressed. Because, cellular design and control are one of the topics that literature is abundant with works 
from all over the world (Egilmez et al., 2014). Several researchers worked on cell loading problem. Among these 
Süer et al., (1995) and Suer et al., (1999) developed initial cell loading rules to minimize total tardiness and 
some other measures. Besides, a few works addressed a methodology which peforms cell loading and product 
sequencing tasks simultaneously. Süer and Dagli (2005) and Süer, Cosner, and Patten (2009) discussed models 
to minimize makespan, machine requirements and manpower transfers. Yarimoğlu (2009) developed a math 
model and genetic algorithm to minimize manpower shortages in cells based on the assumption of synchronized 
material flow. 

Since the current study focuses on job-family scheduling in other words group scheduling, it is critical to cover 
important works from the literate in that aspect. Regarding group scheduling-based works, most of the 
literature addresses machine scheduling as the problem domain where only a handful of works considers group 
scheduling in a cellular shop. As one of the earlier works, for instance, Nakamura et al. (1978) focused on 
minimizing total tardiness and considered sequence-independent family setup.  Hitomi & Ham (1978) also 
considered sequence-independent setup times for a single machine. Ham et al.,(1979) proposed a branch-and-
bound algorithm for the optimal group and job sequence to minimize total flow time. Their second objective 
was to minimize the number of tardy jobs. Pan and Wu (1998) considered a single machine scheduling problem 
to minimize mean flow time subject to due date satisfaction. They have categorized the jobs into groups without 
considering family splitting. Ruiz and Maroto  (2006) studied a hybrid flow shop scheduling problem using GA. 
Liu et al. (2005) developed a GA model for a job shop scheduling problem. Gupta and Chantaravarapan (2008) 
studied the single machine scheduling (SMS) problem to minimize total tardiness considering group technology. 
Individual due dates and independent family setup times have been used in their problem with no family 
splitting. Nearchou (2008) studied SMS problem with common due-date jobs and developed a model using 
differential evolution considering earliness and tardiness as performance measures. Schaller and Gupta (2008) 
proposed optimal branch and bound algorithms to minimize total earliness and tardiness on a single machine 
scheduling problem with family setup times (Schaller and Gupta 2008). In terms of the recent works, a group 
scheduling problem in a two-machine flow shop with a bicriteria objective and carryover sequence-dependent 
setup times was studied by Yazdani et al. (2013). Additionally, case of reconfigurable manufacturing systems 
(Eguia et al. 2013), sequence dependent set-up times and skilled workforce assignment (Costa et al. 2014), case 
of robotic cells (Elmi and Topaloglu 2014) and case of batch production with minimizing the total number of 
changeovers (Alfieri and Nicosia 2014) are other critical works published in recent years. 

In terms of works that utilized metaheuristic optimization along with mathematical optimization, Gholami and 
Zandieh  (2008) proposed a methodology based on integrated simulation and GA model for a dynamic job shop 
scheduling problem. Simulation models were developed to optimize the fitness values to be used in the GA 
model. Hasan et al. (2011) developed a GA model with a local search technique to solve a job-shop scheduling 
problem considering machine breakdowns. In another work, random key alphabet was used to develop several 
GA models for single machine scheduling problem by Valente et al. (2010). The models penalized early and tardy 
jobs with quadratic costs instead of linear or maximum costs in order to minimize weighted tardiness and 
earliness. Models vary from each other with local search techniques, initial population generation and greedy 
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randomized solutions. Furthermore, Sioud et al. (2012) proposed a hybrid GA model for the SMS problem 
considering sequence-dependent setup times. The objective of the model was to minimize total tardiness, where 
the proposed approach combines GA with constraint programming, ant colony optimization, and multi-
objective evolutionary algorithms at the crossover operator to improve solutions. Cheng (2012) provided three 
GA models for a single machine two agent scheduling problem considering learning effect. The models 
minimized the total completion time of the first agent without allowing tardy jobs for the second agent. Mathur 
and Süer (2013) used mathematical modeling and genetic algorithm for scheduling in a textile manufacturing 
facility considering overtime. The objective was profit maximization by minimizing the number of tardy jobs 
using overtime. The results showed that mathematical modeling approach was more effective than GA in most 
cases. Rakrouki et al. (2012) combined Genetic Local Search and Recovering Beam Search to tackle the SMS 
problem and provided and a new heuristic called Genetic Recovering Beam Search taking the advantages of both 
approaches. It was proved that that the new heuristic outperformed the Tabu Search and Recovering Beam 
Search in minimizing the total completion time on the SMS problem.  

Related to the works that focus on scheduling jobs on the rotary injection molding machines in shoe 
manufacturing industry, Süer et al.(1999) have earlier developed a three-phase Heuristic Procedure to 
minimize the makespan. Subramanian (2004) has attempted to minimize the makespan for the rotary injection 
molding machine in the same shoe manufacturing company. He assumed the unlimited availability of the molds. 
Later, Urs (2005) introduced limited mold availability into the same problem to minimize makespan. Dastidar 
and Nagi (2005) developed a mixed integer mathematical model for injection molding scheduling, with the 
objective of minimizing the total cost of inventory, setup and backlogging costs. Sequence-dependent setup 
times, multiple tooling and limited resource capacities are considered as constraints in the model. For larger 
problems, the authors provided a two phase decomposition method for the model in order to create solvable 
sub-problems. The results showed that the proposed model solves larger problems accurately within acceptable 
time frames. Süer et al. (2009) extended the problem with some heuristic procedures and mathematical models. 
Huang et al. (2011) proposed a sequential GA model for rotary machine scheduling considering sequence 
dependent processing and setup times. In the most recent work, Eğilmez and Süer (2011) proposed a non-linear 
mathematical model to the stochastic version of the problem, where group of jobs are scheduled on a rotary 
machine, which is considered to be a single machine scheduling problem with uncertain processing times and 
deterministic due dates. In this paper, cell loading and group scheduling problem are considered together in a 
cellular manufacturing shop. Two objectives are considered to be tackled, namely: the number of tardy jobs (nT) 
and total tardiness (TT). Mese’s mathematical model and a GA are comparatively experimented on various 
problem sizes considering single and hybrid objectives, job splitting and common due date scenarios to increase 
the overall understanding about the group scheduling problem in a cellular shop. The rest of the paper is 
organized as follows. Section 3 provides the description of the problem studied and assumptions made. 
Methodology is explained in section 4. Results of the experimental study are revealed in section 5. Section 6 
introduces the concluding remarks and future dimensions of the current research. 

3. The Problem Studied 

This problem was observed in a shoe manufacturing shop where up to twelve product families exist (Mese 
2009). The manufacturing shop consists of multiple cells in which the rotary injection molding machine is the 
bottleneck. Products are differentiated by five attributes; gender, size, sole type, color, and material. Each 
manufacturing cell includes lasting, rotary molding machine, and finishing/packing operations as shown in 
Figure 1. Lasting prepare the shoes for RMM where the materials are injected into the molds. Finishing/Packing 
basically removes the extra materials from the injected shoes, finish and pack the shoes. 
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Fig. 1. Manufacturing Cells in the Shoe Plant 

 

In terms of the product family grouping, a representation code is used to identify the product families. In the 
‘MC’ code form: M denotes the Material (PU: U, PVC: P, TPR: T), and C denotes the Color (Black: B, Dark Green: 
G, Honey: H, Nicotine: N). There are 12 product families (= 4 colors * 3 material types). All sizes of a specific 
order (with the same Model ID, Gender, Sole Type, Material, Color, and Due Date) is considered as a job. Different 
sizes of a job can have different demand.  All of the sizes included in a job are assumed to have the same due 
date. In terms of other assumptions, the molds used in the Rotary Molding Machine for injection molding vary 
by size, gender, and sole type. It is assumed that there is not any restriction on the availability of molds. 
Therefore, the same size pairs of a job can be run on all positions of the Rotary Molding Machine simultaneously. 
In this study, setup times between jobs in the same family are assumed negligible. However, setup times (for 
material or color or both changes) between families are assumed to take 20 minutes. An example of customer 
orders that consists of 5 jobs and corresponding families is presented in Table 1.  

 

Table 1 

Example family formation 
Job ID Model ID Gender Sole Type Material Color Size Code Total Demand Due Date Family 

1 C M FS TPR Red 5, 6, 7, …, 15 TB 208 11 F1 

2 L F MS PU Red 5, 6, 7, …, 12 UB 881 20 F3 

3 T M MS PU Black 5, 6, 7, …, 15 UB 831 17 F3 

4 T M MS PU Black 5, 6, 7, …, 15 UB 277 13 F3 

5 O F FS PVC Dark Green 5, 6, 7, …, 12 PG 250 15 F2 

 

The most important feature of the scheduling problem studied in this paper is the presence of individual due 
dates for each job in a family. The reason is that customers often order different amount of lots depending on 
varying sizes, colors, etc. which creates the case of individual due dates for each job in a job family. Ideally, the 
demands for certain products are grouped into families based on their processing similarity. It is desirable to 
run the entire family at once to take the advantage of a common setup time and also processing similarities. 
However, when products in a family have different due dates due to certain reasons, the tradeoff between 
meeting the due dates for all jobs and working with minimum amount of setup becomes a challenging task for 
the planner. In fact, this problem has been observed in a shoe manufacturing company during Dr. Suer’s visits 
as consultant. There is a natural conflict between meeting due dates of jobs versus reducing the total setup time 
between families. When all jobs in a family are scheduled all together, setup times are reduced. However, this 
may also lead to other jobs in the following families to be delayed and increases the possibility of having more 
tardy jobs. On the other hand, when a family is split several times, the number of setups increases thus reducing 
the productive time and hence may adversely affect the total tardiness in the long run. The researchers attempt 
to find a balance between family splitting and meeting due dates such that the total tardiness is minimized. The 

Manufacturing Cell i 

Lasting 
Rotary 
Moldin

g 

Finishin
g & 

Packing 
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nT and Tmax objectives are separately addressed by Süer & Mese (2011) and (Süer et al. 2014). In this paper, 
the researchers address the total tardiness objective and also discuss two other variations from the basic 
problem including common due date and family splitting issues. Finally, the relations between TT and nT 
objectives are also briefly explored with additional experiments to explore the impact of different objectives on 
the tradeoff between setup and delivery lateness. 

4. Methodology  

In this paper, both mathematical model (MM) and genetic algorithm (GA) approaches are proposed to solve the 
proposed problem. Therefore, the methodology is organized as two sections. First section describes the 
proposed mathematical model for the simultaneous cell loading, family and job scheduling to minimize total 
tardiness and nT. Since the proposed problem has such features as inclusion of multi objectives and dealing with 
job-families during optimizing the schedules for cells, mathematical optimization can only provide optimal 
solutions for a small-size of problems. On the other hand, it is critical to develop decision support frameworks 
for manufacturing cell scheduling where alternative methodologies such as metaheuristics could be used for the 
same objective. Therefore, GA is utilized as benchmark approach for MM, which is compared with MM for a set 
of problems. The hierarchical framework of the methodology is illustrated in Figure 2.  

 

 

Fig. 2. Hierarchical Framework of the Proposed Methodology 

 

4.1. Mathematical Model (MM) 

This section describes the MM developed, which is a modified version of the model proposed by Süer & Mese 
(2011). The proposed model consists of four indices for family, job, position and cell and six decision variables 
and eight parameters. The notation is described as follows. 

Indices: 

i Family index 

Mathematical Model 
(MM)

Mixed integer programming
Cell loading & job-family 
scheduling
Minimizing TT & nT

Genetic Algorithms (GA)
Initial Population
Reprodcution
Mutation & Crossover
Selection

Performance Evaluation
Comparison of MM and GA
Experimentation with Multiple 
Objectives
Conclusion & discussion, 
managerial implications
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j Job index 

k Position index 

m Cell index 

 

Parameters 

n Number of jobs  

ni Number of jobs in family i 

f Number of families 

M Number of cells 

 Pij Process time of job j from family i 

 Dij Due date of job j from family i 

 S Setup Time 

 R Big integer 

 

Decision Variables 

Ymk 0 if kth position in cell m is occupied, 1 otherwise. 

Xijmk 1 if job j from family i is assigned to the kth position in cell m, 0 otherwise. 

Cmk Completion time of the job in kth position in cell m 

Tmk Tardiness value of the job in kth position in cell m 

nTmk 1 if job in kth position in cell m is tardy, 0 otherwise 

Wmk 1 if setup is needed before the job in kth position in cell m, 0 otherwise.   

 

Objective Function: 

min𝑍𝑍𝑛𝑛𝑛𝑛 = � �𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑀𝑀

𝑚𝑚=1

                                                                                                             (1) 

 

min𝑍𝑍𝑛𝑛𝑛𝑛 = � �𝑛𝑛𝑚𝑚𝑚𝑚

𝑛𝑛

𝑚𝑚=1

𝑀𝑀

𝑚𝑚=1

                                                                                                                (2) 

Subject to:   

 

� �𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑛𝑛

𝑚𝑚=1

= 1  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, ,𝑓𝑓
𝑀𝑀

𝑚𝑚=1

  𝑗𝑗 = 1, ,𝑛𝑛𝑖𝑖                                                                           (3) 
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��𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑛𝑛𝑖𝑖

𝑖𝑖=1

 ≤ 1  
𝑓𝑓

𝑖𝑖=1

for 𝑚𝑚 = 1, ,𝑀𝑀  𝑘𝑘 = 1, ,𝑛𝑛                                                                          (4) 

 

��𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚

𝑛𝑛𝑖𝑖

𝑖𝑖=1

  ≥��𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚(𝑚𝑚+1)

𝑛𝑛𝑖𝑖

𝑖𝑖=1

𝑓𝑓

𝑖𝑖=1

 
𝑓𝑓

𝑖𝑖=1

for 𝑚𝑚 = 1, ,𝑀𝑀  𝑘𝑘 = 1, ,𝑛𝑛 − 1                                      (5)   

                                                                 

1 + 𝑊𝑊𝑚𝑚𝑚𝑚 ≥�𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 + � � 𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚(𝑚𝑚−1)
𝑞𝑞∈(𝑓𝑓\𝑖𝑖)

𝑛𝑛𝑞𝑞

𝑖𝑖=1

  
𝑛𝑛𝑖𝑖

𝑖𝑖=1

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 = 1, ,𝑀𝑀 𝑘𝑘 = 2, ,𝑛𝑛                         (6) 
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  ≤ 𝑅𝑅 ∗ (1 − 𝑌𝑌𝑚𝑚𝑚𝑚)   
𝑓𝑓

𝑖𝑖=1

for 𝑚𝑚 = 1, ,𝑀𝑀     𝑘𝑘 = 1, ,𝑛𝑛                                             (7)    

 

−𝐶𝐶𝑚𝑚1 + ��𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚1 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=1

≤ 𝑅𝑅 ∗ 𝑌𝑌𝑚𝑚1  
𝑓𝑓

𝑖𝑖=1

𝑚𝑚 = 1, ,𝑀𝑀                                                               (8. a) 

 

𝐶𝐶𝑚𝑚(𝑚𝑚−1) − 𝐶𝐶𝑚𝑚𝑚𝑚 + 𝑆𝑆 ∗𝑊𝑊𝑚𝑚𝑚𝑚 + ��𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 ∗ 𝑃𝑃𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=1

≤  𝑅𝑅 ∗ 𝑌𝑌𝑚𝑚𝑚𝑚  
𝑓𝑓

𝑖𝑖=1

 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 = 1, ,𝑀𝑀 𝑘𝑘 = 2, ,𝑛𝑛                   (8. b)   

                                          

𝐶𝐶𝑚𝑚𝑚𝑚 −��𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 ∗ 𝐷𝐷𝑖𝑖𝑖𝑖

𝑛𝑛𝑖𝑖

𝑖𝑖=1

  ≤    𝑛𝑛𝑚𝑚𝑚𝑚 
𝑓𝑓

𝑖𝑖=1

 for 𝑚𝑚 = 1, ,𝑀𝑀    𝑘𝑘 = 1, ,𝑛𝑛                                         (9)    

 

𝑛𝑛𝑚𝑚𝑚𝑚 ≤ 𝑅𝑅 ∗ 𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚                                    𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 = 1, ,𝑀𝑀 𝑘𝑘 = 2, ,𝑛𝑛                                           (10)   

 

Definition of Variables:  

 

 𝑋𝑋𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 ∈ {0, 1},    𝑊𝑊𝑚𝑚𝑚𝑚 ∈ {0, 1},   𝑌𝑌𝑚𝑚𝑚𝑚 ∈ {0, 1},     

𝐶𝐶𝑚𝑚𝑚𝑚 ≥ 0,     𝑛𝑛𝑚𝑚𝑚𝑚 ≥ 0                   

The objective functions are to minimize the number of tardy jobs (nT) and Total Tardiness (TT) and given in 
Equations (1) and (2). For single objective problems, equations 1 and 2 are used individually. For the multi-
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objective cases, both equations are used together. According to Equations (3), each job can be assigned only 
once. Equation (4) guarantees that each position in each cell can be assigned at most one job. Equation (5) 
enforces jobs to be assigned consecutively in each cell. Equation (6) deals with setup requirements. If the 
consecutive jobs come from different families, then this constraint guarantees that a setup is added between 
those consecutive jobs. In Equations (7), (8.a) and (8.b), If-then constraints are used to eliminate the 
nonlinearity in the model. Equation (7) checks if a position is occupied by a job. If so, Equations (8.a) and (8.b) 
determine the completion time of the job in that position. Equation (9) calculates the tardiness value of a job 
and Equation (10) performs as the counter for determining the number of tardy jobs (nT). 

4.2. Genetic Algorithm  

The proposed MM cannot solve large problems due to computational requirements.  As a result, a genetic 
algorithm approach is proposed and later its performance is measured against the math model results. First, the 
initial population of n chromosomes is formed randomly. Then, mating partners are determined using mating 
strategies to perform crossover. The crossover and mutation operators are performed to generate offspring. 
For selecting the next generation, parents are added to the selection pool along with offspring. The next 
generation is selected from this pool based on their fitness function value. These steps are repeated until the 
number of the generations specified by the user is reached. Finally, the best chromosome obtained during the 
entire evolutionary process is taken as the final solution. Following is the brief list of notation used in GA: 

G: Number of Generations  

PS: Population Size  

PC: Crossover Probability  

PE: Elite ratio  

PW: Worst ratio  

PMJ: Mutation Probability for Jobs  

PMC: Mutation Probability for Cells 

4.2.1. Chromosome Representation   

Each chromosome consists of n genes and each gene corresponds to a job. For each gene, code (X, Y) is used 
where X denotes the job number and Y denotes the cell it is assigned. The sequence of genes in a chromosome 
also establishes the sequence of jobs in the cells. An illustration is given in Figure 3, where the sequence of jobs 
in cell 1 is Jobs 2, 1 and 6, in cell 2: it is Jobs 5, 3 and 4 and similarly, in cell 3, it is Jobs 8,7,9. 

 

(2,1) (5,2) (8,3) (1,1) (6,1) (7,3) (3,2) (4,2) (9,3) 

 

Fig. 3. A Chromosome Representation 

4.2.2. Mating 

Three mating strategies are used; 1) Random (R), 2) Best-Best (B-B), and 3) Best-Worst (B-W). The 
reproduction probabilities of the chromosomes are calculated according to their fitness function. The next step 
depends on the mating strategy used.  
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1) Random Mating Strategy; Each chromosome in the population is mated with a randomly selected partner 
and they produce one offspring. The partner is selected using reproduction probability based on Roulette 
Wheel approach. By using the Random Mating Strategy, PS mating pairs are determined to 

generate PS offspring. 
2) Best-Best Mating Strategy; All chromosomes are ranked with respect to their reproduction probabilities (in 

descending order). Then, the top two chromosomes form a pair, the next top two chromosomes form 
another pair and so on. In addition, the first X% of the pairs produce 3 offspring, the next Y% of the pairs 
produce 2 offspring, and the remaining pairs produce 1 offspring. By the Best-Best Mating Strategy, 

(PS/2) mating pairs are determined to generate at least PS offspring. 
3) Best-Worst Mating Strategy; After chromosomes are ranked as in B-B strategy, the best chromosome is 

paired with the worst chromosome; the second best chromosome is paired with the second worst 
chromosome and so on. All pairs produce 2 offspring. By the Best-Worst Mating Strategy, (PS/2) 
mating pairs are determined to generate at least PS offspring. 

4.3.3. Crossover 

Two different strategies are used; 1) Position-Based Crossover (P-B) and, 2) Order Crossover (OX) Strategies 
(Gen & Cheng (1997). The crossover operation is applied to the identified pairs with a probability of PC. The first 
parent is copied ‘as is’ as the offspring if crossover is not performed. One important point is that the crossover 
operator affects only the sequence of jobs. In other words, the crossover is applied only to the genes’ X element 
and not to Y element. Following is the explanation of the aforementioned crossover procedures undertaken: 

− After determining the mating pairs that will go through the crossover step, the crossover is executed 
according to the selected crossover strategy. If the Position-Based Crossover Strategy is selected, 
following steps are applied: First, a set of genes are selected from the first parent with a probability of 
0.5. Second, the X values of the selected genes are copied to the corresponding genes of the produced 
offspring. Third, the selected X values are deleted from the second parent. Finally, the X values left in the 
parent chromosome after deleting are placed into the unfixed genes of the offspring from left to right 
according to the order of the genes to produce the offspring completely. 

 
− If the Order Crossover Strategy is selected, following steps are applied: First two genes are selected with 

a probability of 0.5 from the first parent to determine the first and the last genes of a substring. Second, 
the X values of this substring are copied into the corresponding genes of a chromosome in order to 
produce an offspring. Third, the selected X values are deleted from the second parent. Finally, the X 
values left in the parent chromosome after deleting are placed into the unfixed genes of the offspring 
from left to right according to the order of the genes to produce the offspring completely. This procedure 
is followed until all offspring are produced. After crossover operations, all offspring go through the 
mutation step. 

 
4.4.4. Mutation 

Two steps are used in the mutation operator. The first one is used for job sequence and only Reciprocal 
Exchange (R-E) Mutation Strategy is used (Gen & Cheng (1997). In R-E Mutation strategy, the offspring, after 
randomly being selected, is mutated by swapping two randomly selected X genes of the chromosome. The 
mutation for job sequence is performed with a probability of PMJ. The second step involves mutating cell 
assignments (e.g., only Y gene is mutated). In the mutation of cell assignments, two different mutation strategies 
are used, namely: Random (R), and Reciprocal Exchange Mutation. The mutation of the cell assignment is 
performed with a probability of PMC. In Random Mutation strategy, the offspring is mutated by randomly 
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selecting a set of genes, and changing the Y values of the genes randomly with all cell numbers having equal 
probability. After mutation operations, all offspring are transferred to the selection pool for the next generation. 

4.4.5. Selection 

In this study, selection pool consists of all offspring and some of the parents. The next generation is selected 
from this pool. The selection from parents is a two-step process. First, the parents are ranked with respect to 
their reproduction probability in descending order. Then some of the parents are from the top of the list are 
designated as elites and advanced to the selection pool. The percentage of the selected parents from PS is found 
using a ratio called elite ratio (PE*PS). Next, the best PE% parents are directly selected to advance to the selection 
pool. Then, the remaining (100-PE)% chromosomes are selected from the parents randomly based on their 
reproduction probability using Roulette Wheel Selection. Once the selection pool is identified, the chromosomes 
are ranked with respect to their reproduction probability and a final selection is made from this pool to generate 
the next generation. In some experiments, the researchers also allowed a certain percentage of lowest 
performers (Pw%) to advance automatically to the next generation to avoid immature  convergence of the 
population. The percentage of the lowest performing parents from PS is found using a ratio called worst ratio 
(PW*PS). All selected chromosomes constitute the next generation. This procedure is repeated until the number 
of the generations reaches to a specified number. The best chromosome among all generations is set as the best 
solution of GA model.  

5. Results 

The results are grouped in six sections. 1) Genetic Algorithm (GA) Application, 2) Comparison of MM with 
Genetic Algorithm, 3) Family Splitting vs. No Family Splitting for Single Cell 4) Family Splitting vs. Family 
Preemption Only, 5) Impact of Family Splitting on Common Due Date 6) Dual Performance Measures (TT and 
nT).  

5.1. Experiments with GA 

In this experiment, three datasets were used to determine the best GA parameters. The experiment started with 
a set of default values and then the values of the GA parameters are changed one at a time in order to obtain 
better combinations. The list of combinations was summarized in Table 2.  

 

Table 2 

Selected GA parameter combinations 
 

Elite R  Worst R pc pmj pmc Mating  

Strategy 

Crossover 

Strategy 

Mutation 

Strategy 

Combination 1 0.1 0 0.7 0.05 0.5 R P-B R 

Combination 2 0.1 0 0.7 0.05 0.5 B-B P-B R 

Combination 3 0.1 0 0.7 0.05 0.5 B-W P-B R 

Combination 4 0.1 0 0.7 0.05 0.5 R OX R 

Combination 5 0.1 0 0.7 0.05 0.5 B-B OX R 

Combination 6 0.1 0 0.7 0.05 0.5 B-Wt OX R 
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5.2. Comparison of Math Models & GA 

In this section, the results of the MMs are compared with the GA results. The experimental conditions that are 
detailed in the previous section are utilized in GA runs. The MM solutions (optimal solutions) and GA solutions 
for configurations are given in Table 3 and Table 4. Solutions with single cell include configurations 1-3 and 
shown in Table 3. Multi cell solutions of configurations 4-6 are provided in Table 4. 

 

Table 3 

Results for Minimizing TT for One Cell 
 

Configuration Math 
Model  

The Number of 

 Decision 
Variables & 
Constraints 

Math Model 
Execution 

Time 

(hr:min:sec) 

Optimal 
Frequency for 

GA (x/10) 

GA Execution 
Time 

(hr:min:sec) 

1 1107.2 155 - 95 00:00:02 10 00:00:59 

2 1611.7 181 – 148 00:00:40 10 00:01:01 

3 743 209 - 161 00:00:19 10 00:01:06 

 

GA found the optimal solution ten times out of ten replications for one cell problem and with a high 
frequency for multiple cells case. Execution times for Math Model and GA were not significantly different for one 
cell problems whereas the gap increased significantly for multi-cell problems.  

 

                                                                                                Table 4 

                                                             Results for Minimizing TT for Multiple Cells 

Configuration Math 
Model 

The Number of 

Decision 
Variables & 
Constraints 

Math Model 
Execution 

Time 

(hr:min:sec) 

Optimal 
Freq. for 

GA (x/10) 

GA Exe. 
Time 

(hr:min:sec) 

Avg. of GA 
Results 
(min.) 

4 345.6 854 – 406 00:25:20 9 00:01:16 347.6 

5 1162.4 854 – 490 11:43:38 7 00:01:19 1164.8 

6 432.4 1426 – 674 11:21:14 9 00:01:41 434.45 

 

5.3. No Family Splitting for Single Cell Case 

The approach proposed by Gupta & Chantaravarapan (2008b) are run with five datasets that have varying 
family and job configurations. The results of configurations 7-11 are shown in Table 5. Family splitting (FS) 
resulted in lower total tardiness values in all datasets. Based on the results, it can be concluded that allowing 
family splitting will produce lower total tardiness values (equal results in worst case scenario). The results show 
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that families were split several times and this led to better results. However, the length of setup times will affect 
the number of splits. The impact of setup times is left as a future work. 

Table 5 

The impact of Family Splitting (FS) 
 

  Total Tardiness Number of Setups 
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7 2 7 3-4 1084 896 1 2 

8 3 9 3-3-3 1610.3 993.2 2 5 

9 4 10 2-2-3-3 4264.2 3866.7 3 4 

10 4 12 3-3-3-3 5075.6 2994.5 3 7 

11 4 12 3-3-3-3 3807.5 2034.6 3 9 

 

5.4. Family Preemption Only (FPO) Strategy 

In this section, family splitting is allowed however, it is restricted to only one cell. This strategy is called as 
“Family Preemption Only”. In some manufacturing systems, family splitting among cells is not desirable due to 
setup restrictions. This strategy can be used in such circumstances to schedule each family to only one cell with 
allowing family splitting within the cell, which can be also the case in food production environments where 
certain group of food products need to be dedicated to certain cells due to hygiene-related or health reasons 
(Egilmez et al. 2012). The results of experimentation performed with three datasets are shown in Table 6. 
According to the results, this constraint adversely affects the total tardiness values. The Gantt chart for 
configuration 4 is illustrated in Figure 4. It can be concluded that, as long as there is no restriction, the allowance 
of family splitting among cells can result in better schedules than within one cell.  

 

 

 

 

 

 

Table 6 

Comparison of FS vs. FPO Strategies 

Configuration The number of families The number of jobs FS FPO 

4 4 15 345.6 1008.7 
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5 5 13 1162.4 1354.4 

6 6 11 432.4 2484.8 

 

 

 
Fig. 4. Comparison of Family Splitting and Family Preemption Only Strategies 

 

5.5. The Impact of Family Splitting on Common Due Date 

In this section, the impact of family splitting on common due date is analyzed. Gupta & Chantaravarapan (2008b) 
considered common due dates and no family splitting for the single machine problem. In this study, it is 
considered that family splitting among manufacturing cells is significant where jobs have individual due dates. 
Moreover, family splitting can be beneficial where jobs from the same family have same due date (common due 
date). To illustrate the case, an 8-job 2-family problem is derived. It is assumed that all jobs in a family has 
common due date. The processing time and due date information is given in Table 7. The example problem is 
solved based on the two objectives: nT and TT. The results are provided as Gantt charts in Table 8 (nT) and 
Table 9 (TT). 

 

 

 

 

Table 7 

Example problem data 

Family 1 1 1 1 2 2 2 2 

T = 0 

910.87 

J43 

Cell 3 

Cell 2 

Cell 1 

652.68 517.65 301.92 104.08 854.03 

766.13 531.34 376.39 115.64 

621.28 369.08 226.51 85.62 854.99 

T = 42.28 T =0 T 
34 51 

J24 J22 J42 J41 J31 

T =0 T = 0 

T = 189.13 T =0 T =0 

J34 J21 J23 J32 

T =0 

T = 76.68 T = 37.65 T =0 

J13 J11 J12 J33 J35 

T =0 T = 0 

Family Splitting is Allowed (FSA) 

1329.1 

Cell 3 

Cell 2 

Cell 1 

J34 

T =77.3 

1115.
4 

239.72 

T =0 

595.3 361.5 226.5 85.6 

766.1
3 

653.289 437.565 115.643 

615.518 363.321 240.75 

T = 39.518 T =0 T 
34 51 

J43 J42 J41 

T =0 

T = 212.3 T =53.6 T 
47 72 

J13 

T = 155.4 

T = 19.3 T = 0 T =34.5 

J24 J22 J21 J23 

T =0 

J12 J33 J32 J11 J31 J35 

766.13 

T = 0 

Family Preemption Only (FPO) 
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Job 1 2 3 4 1 2 3 4 

Processing Time 197 215 104 175 134 140 233 85 

Due Date 480 480 480 480 320 320 320 320 

 

 

Table 8 

The impact of common due date on nT 

Family Splitting is Allowed (FSA) 

Objective Solution: nT=2 

 
Family Splitting is Not Allowed (FSNA) 

Objective Solution: nT=3 

Cell-1 Cell-1 

Job J (2,1) J(1,3) J(1,1) J(1,4) Job J (1,4) J(1,3) J(1,1) J(1,2) 

Tardiness 0 0 0 130 Tardiness 0 0 0 211 

Cell-2 Cell-2 

Job J (2,4) J(2,2) J(1,2) J(2,4) Job J (2,1) J(2,2) J(2,4) J(2,3) 

Tardiness 0 0 0 353 Tardiness 0 0 39 272 

 

Table 9 

The impact of common due date on TT 

Family Splitting is Allowed (FSA) 

Objective Solution: TT=363 

 
Family Splitting is Not Allowed (FSNA) 

Objective Solution: TT=522 

Cell-1 Cell-1 

Job J (2,4) J(2,3) J(1,3) J(1,2) Job J (2,4) J(2,2) J(2,1) J(2,3) 

Tardiness 0 0 0 157 Tardiness 0 0 39 272 
          

Cell-2 Cell-2 

Job J (2,2) J(2,1) J(1,4) J(1,1) Job J (1,4) J(1,3) J(1,1) J(1,2) 

Tardiness 0 0 0 166 Tardiness 0 0 0 211 

 

 

According to the results of nT objective in Table 8, family splitting allowance resulted in 2 tardy jobs whereas 3 
tardy jobs are obtained when family splitting is not allowed. In terms of TT, family splitting allowance resulted 
in total tardiness of 363 where total tardiness of 522 is obtained when family splitting is not allowed (see Table 
9). In conclusion, allowance of family splitting can also be beneficial in common due date problem based on both 
nT and TT objectives.  
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5.6. Dual Objectives 

Finally, both of the performance measures (total tardiness, TT and number of tardy jobs, nT) are simultaneously 
considered in this section. A bi-criteria model is developed with a minor modification on the proposed model. 
Both single objective (nT and TT) and dual objective models (nT(1)-TT(2) and TT(1)-nT(2)) are run and the results 
are compared for three datasets. The details of datasets are given in Table 10 along with results. In the dual 
models, the primary objective decision variables are treated the same however, the secondary objective decision 
variables are multiplied with a factor. The factors have been determined after some trial runs so that the optimal 
solution is found with respect to primary objective and the secondary performance measure improves. The 
configurations and results of datasets are shown in tables 10 and 11, respectively. When dual measures were 
used, the total tardiness improved significantly when used as a secondary measure. 

Table 10 

Configurations 

Configuration Number of jobs Number of families Number of cells Formation 

1 9 3 3 3-3-3 

2 10 5 2 2-2-2-2-2 

3 12 4 3 3-3-3-3 

 

Table 11 

Dual Objective vs. Single Objective 

Single Dual Single Dual 

TT TT-nT nT nT-TT 

TT (nT) TT nT nT (TT) nT TT 

325.2 3 325.2 3 3 1368.5 3 325.2 

292.2 4 292.2 4 2 878.6 2 426.3 

866.5 5 866.5 5 3 1275.5 3 929.29 

 

6. Conclusions, Managerial Implications and Future Work 

In this paper, multi objective cell, family and job sequencing problem is studied considering two performance 
measures, namely: minimizing the number of tardy jobs and total tardiness. Every job is assumed to have 
individual due date in contrast to common family due date concept. Each family requires a setup before the jobs 
in that family can be processed. This creates a natural conflict between meeting due dates of jobs and reducing 
total setup times. If the entire family is scheduled together, then the total setup time will be the minimum. But, 
the jobs in the consecutive families may be postponed and probably total tardiness will increase. In contrast, 
splitting a family several times may increase the number of setups which reduce the productive time, and finally 
have an adverse effect on total tardiness.  

Mathematical modeling is one of the available and reliable solution techniques, which guarantees to find the 
optimal solution. However, it often becomes a challenging task to solve large problems using MMs because of 
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the computational requirements and experiment times. As a result, there is a need to use other approaches to 
solve such problems. Genetic Algorithm (GA) approach is proposed as alternative solution approach to larger 
size problems. GA found the optimal solution in all problems with high frequency. The execution time of MM 
was reasonable only for small problem sizes. GA clearly outperformed MM with respect to execution times. 

The results showed that family splitting occurred in all multi-cell problems. The allowance of family splitting 
(FSA) resulted in better schedules in terms of both nT and TT. The occurrence of family splitting in these 
problems show us that the system used the feature of family splitting since it was beneficial in terms of reducing 
total tardiness. In some industries, managers may prefer this option to control and deal with quality issues and 
also due to learning effect on the workers. Therefore, another possible variation from the basic problem is 
considered; family preemption only (FPO). The main idea behind this strategy was to allow family splitting but 
limit each family to a single cell. Finally, bi-criteria cell loading, family and job sequencing is also experimented.  

The unique contributions of this paper, related managerial implications and limitations are summarized as 
follows: 

• The solution procedure provides flexibility with dealing with multiple objectives (single or hybrid 
objective cases for minimizing nT and TT). Operations people always deal with different customers with 
varying expectations. Depending on the customer expectation level and type of partnership, scheduling 
task could be handled considering single focus on minimizing only the number of tardy jobs or the total 
tardiness, or both simultaneously. 

• This paper enhances group scheduling on manufacturing cells considering various extended options for 
schedulers such as allowance of family splitting, family preemption and common due date options. 
These options touch to the real situations that operations people deal with in real industries. For 
instance, even though it is not always a desired concept, family splitting can be critical if the jobs in a 
family are related with individual customers with different expectations and levels of business 
relationships. Additionally, family preemption will be beneficial and can improve the productivity 
significantly, if individual job-families are defined based on the product type which is dedicated to an 
individual cell. For instance, preemption strategy can work on jobs where product A’s orders from 
different customers are considered to be met by cell A, then product B’s orders by cell B. In terms of the 
common due date, it’s a robust planning option where operations scheduler can group orders for 
different products from the same customer based on assigning a common delivery date.  

• In terms of the alternative solution procedure, GA provided reliable performance in most cases 
compared to the optimal solution provided by MM. The experimentation times were significantly 
reduced by GA, which can help decision making process to be faster. Since scheduling decisions are made 
in a highly dynamic manufacturing environment and revised on a daily basis, it is critical to have the 
heuristic methods that could assist with scheduling related decision making in faster time with reliably 
accuracy. 

• The main limitation of the current research is the proposed methodology’s deterministic characteristics. 
Processing times and due dates are considered to be deterministic, which is ideal if the manufacturing 
environment is machine-oriented. However, in labor oriented manufacturing shops, labor skills cause 
variation in processing times and assuming due dates uncertain or to follow a probability distribution 
would make the problem more complex and challenging but enable practitioners provide more robust 
solutions that better deal with uncertainty. In this regard, stochastic programming models would be a 
critical future dimension, which was previously utilized in works such as (Egilmez et al. 2011; Eḡilmez 
et al. 2011; Egilmez et al. 2012; Egilmez & Süer 2011; Egilmez et al. 2014). 

The future directions of current research include consideration of sequence-dependent setup times, job splitting 
and experimentation with other meta-heuristic techniques. In addition, the current scheduling problem can also 
be studied from an inverse scheduling perspective where a job sequence is given and the objective is to 
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determine the minimal perturbation to the job (Koulamas 2005) and connection with the layout aspects can be 
considered in parallel with Ariafar et al. (2012) and Manzini et al.(2006). Finally, alternative family formations 
can be experimented and the efficiency of schedules could be compared by using Data Envelopment Analysis 
similar to recent works such as Aalaei et al. (2014), Pourjavad & Shirouyehzad (2014). 
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