23 research outputs found

    A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency

    Full text link
    Single emitters have been considered as sources of single photons in various contexts such as cryptography, quantum computation, spectroscopy, and metrology. The success of these applications will crucially rely on the efficient directional emission of photons into well-defined modes. To accomplish a high efficiency, researchers have investigated microcavities at cryogenic temperatures, photonic nanowires, and near-field coupling to metallic nano-antennas. However, despite an impressive progress, the existing realizations substantially fall short of unity collection efficiency. Here we report on a theoretical and experimental study of a dielectric planar antenna, which uses a layered structure for tailoring the angular emission of a single oriented molecule. We demonstrate a collection efficiency of 96% using a microscope objective at room temperature and obtain record detection rates of about 50 MHz. Our scheme is wavelength-insensitive and can be readily extended to other solid-state emitters such as color centers and semiconductor quantum dots

    Spontaneous emission enhancement of a single molecule by a double-sphere nanoantenna across an interface

    Full text link
    We report on two orders of magnitude reduction in the fluorescence lifetime when a single molecule placed in a thin film is surrounded by two gold nanospheres across the film interface. By attaching one of the gold particles to the end of a glass fiber tip, we could control the modification of the molecular fluorescence at will. We find a good agreement between our experimental data and the outcome of numerical calculations

    A polarizing situation: Taking an in-plane perspective for next-generation near-field studies

    Full text link

    Enhancing the radiative emission rate of single molecules by a plasmonic nanoantenna weakly coupled with a dielectric substrate

    No full text
    Enhancing the spontaneous emission of single emitters has been an important subject in nano optics in the past decades. For this purpose, plasmonic nanoantennas have been proposed with enhancement factors typically larger than those achievable with optical cavities. However, the intrinsic ohmic losses of plasmonic structures also introduce an additional nonradiative decay channel, reducing the quantum yield. Here we report on experimental studies of a weakly coupled dielectric substrate and a plasmonic nanoantenna for enhancing the radiative decay rate of single terrylene molecules embedded in an ultrathin organic film. We systematically investigate how the refractive index of the dielectric substrate affects the lifetime and the quantum efficiency and show that the coupled structure could moderately enhance the radiative decay rate while maintaining a high quantum efficiency. (C)2015 Optical Society of Americ

    Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets

    No full text
    Nanotechnology, with its broad impact on societally relevant applications, relies heavily on the availability of accessible nanofabrication methods. Even though a host of such techniques exists, the flexible, inexpensive, on-demand and scalable fabrication of functional nanostructures remains largely elusive. Here we present a method involving nanoscale electrohydrodynamic ink-jet printing that may significantly contribute in this direction. A combination of nanoscopic placement precision, soft-landing fluid dynamics, rapid solvent vapourization, and subsequent self-assembly of the ink colloidal content leads to the formation of scaffolds with base diameters equal to that of a single ejected nanodroplet. The virtually material-independent growth of nanostructures into the third dimension is then governed by an autofocussing phenomenon caused by local electrostatic field enhancement, resulting in large aspect ratio. We demonstrate the capabilities of our electrohydrodynamic printing technique with several examples, including the fabrication of plasmonic nanoantennas with features sizes down to 50 nm
    corecore