35 research outputs found

    Quantifying estuarine-scale invertebrate larval connectivity: Methodological and ecological insights

    Get PDF
    The early life history of many marine organisms includes a dispersive planktonic larval phase which allows for the exchange of individuals among subpopulations. Knowledge of the degree of exchange, or connectivity, is critical to understanding the abundance and distribution of marine populations. Here, we applied geochemical tagging to assess estuarine-scale larval connectivity among subpopulations of the commercially and ecologically important eastern oyster, Crassostrea virginica. To generate an “atlas” of geochemical signatures associated with spawning sites and potential dispersal pathways from spawning sites, we outplanted recently spawned oyster larvae to stationary moorings and surface drifters, respectively. Using the atlases generated from both outplant methods, we predicted natal origin, and thus larval connectivity, for newly settled oysters (spat) during three field trials over two summers (June 2013, June 2014, and August 2014), within three regions (∼ 35 km × 15 km quadrants) of Pamlico Sound, North Carolina, U.S.A. Patterns of larval connectivity varied both between months and annually but were predominately directed south to north following wind patterns. Predicted self-recruitment was variable, as up to 100% of spat in a given region displayed signatures consistent with natal origin within that same region. Predicted connectivity patterns varied significantly based on atlases generated from outplanting on stationary moorings vs. surface drifters. For example, drifter-predicted connectivity followed biophysical larval dispersal models more closely than mooring-predicted connectivity, while mooring-predicted connectivity displayed a higher diversity in larval sources. Both connectivity models highlight the need for resource management strategies such as reserve networks to incorporate designs that account for inherent variability in dispersal pathways

    Environmental effects on elemental signatures in eastern oyster Crassostrea virginica shells: Using geochemical tagging to assess population connectivity

    Get PDF
    We evaluated the utility of geochemical tagging methods to discern larval connectivity among an invertebrate metapopulation within a large (∼5000 km2) temperate estuary. Specifically, we examined how estuarine-scale gradients in temperatures (21° to 26.5°C), salinities (12.5 to 20 ppt), and trace metal concentrations (ambient, +16 ppb Mn and 0.16 ppb Pb, or +32 ppb Mn and 0.32 ppb Pb) affect Crassostrea virginica larval-shell signatures of Mn, Sr, Ba, and Pb in controlled mesocosms. We also utilized field-collected, newly settled oysters across Pamlico Sound, NC, USA, to explore signature variability among natural temperature and salinity gradients and examine the spatial resolution at which geochemical signatures can be used to discriminate between collection regions. Mesocosm experiments revealed environmentally and statistically significant interactive effects between temperature and salinity on elemental ratios in larval oyster shells, favoring higher Sr concentrations in cooler, fresher water, but no effects of these factors on Ba signatures. Mesocosm trials also showed increased Mn signatures in larval shell following from spiking mesocosms with Mn solutions; however, this relationship did not hold for Pb following analogous elemental spikes. Our field collections of recent settlers showed similar patterns of high Sr at relatively low salinities and temperatures, without clear environmental gradients for Ba. Overall, we found that across regional (35 km) spatial scales, environmental variables, such as salinity and temperature, can generate distinct multi-elemental signatures between putative natal sites. However, if sites are close together or located in similar environments, discrimination among sites appears greatly reduced. We suggest that geochemical tagging provides a promising approach for characterizing larval connectivity among subpopulations within whole-estuarine systems

    Study of Z → llγ decays at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a study of Z → llγ decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton–proton data sample corresponding to an integrated luminosity of 20.2 fb−1 collected at a centre-ofmass energy √s = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with stateof-the-art predictions for final-state QED radiation. First measurements of Z → llγ γ decays are also reported
    corecore