479 research outputs found

    Electronic gating circuit and ultraviolet laser excitation permit improved dosimeter sensitivity

    Get PDF
    Standard dosimeter reader, modified by adding an electronic gating circuit to trigger the intensity level photomultiplier, increases readout sensitivity of photoluminescent dosimeter systems. The gating circuit is controlled by a second photomultiplier which senses a short ultraviolet pulse from a laser used to excite the dosimeter

    Remote balance weighs accurately amid high radiation

    Get PDF
    Commercial beam-type balance, modified and outfitted with electronic controls and digital readout, can be remotely controlled for use in high radiation environments. This allows accurate weighing of breeder-reactor fuel pieces when they are radioactively hot

    The Chilean Economy: A look at the relevance of the Chilean Model

    Get PDF

    Constraining angular momentum transport processes in stellar interiors with red-giant stars in the open cluster NGC6819

    Full text link
    Clusters are excellent test benches for verification and improvement of stellar evolution theory. The recent detection of solar-like oscillations in G-K giants in the open cluster NGC6819 with Kepler provides us with independent constraints on the masses and radii of stars on the red giant branch, as well as on the distance to clusters and their ages. We present, for NGC6819, evolutionary models by considering rotation-induced mixing ; and the theoretical low-l frequencies of our stellar models.Comment: Submitted to EPJ Web of Conferences, to appear in the Proceedings of the 3rd CoRoT Symposium, Kepler KASC7 joint meeting; 2 pages, 1 figur

    Are the stars of a new class of variability detected in NGC~3766 fast rotating SPB stars?

    Full text link
    A recent photometric survey in the NGC~3766 cluster led to the detection of stars presenting an unexpected variability. They lie in a region of the Hertzsprung-Russell (HR) diagram where no pulsation are theoretically expected, in between the δ\delta Scuti and slowly pulsating B (SPB) star instability domains. Their variability periods, between \sim0.1--0.7~d, are outside the expected domains of these well-known pulsators. The NCG~3766 cluster is known to host fast rotating stars. Rotation can significantly affect the pulsation properties of stars and alter their apparent luminosity through gravity darkening. Therefore we inspect if the new variable stars could correspond to fast rotating SPB stars. We carry out instability and visibility analysis of SPB pulsation modes within the frame of the traditional approximation. The effects of gravity darkening on typical SPB models are next studied. We find that at the red border of the SPB instability strip, prograde sectoral (PS) modes are preferentially excited, with periods shifted in the 0.2--0.5~d range due to the Coriolis effect. These modes are best seen when the star is seen equator-on. For such inclinations, low-mass SPB models can appear fainter due to gravity darkening and as if they were located between the δ\delta~Scuti and SPB instability strips.Comment: 6 pages, 2 figures, to appear in the proceedings of the IAU Symposium 307, New windows on massive stars: asteroseismology, interferometry, and spectropolarimetr

    Asteroseismology of evolved stars to constrain the internal transport of angular momentum. VI. Testing a parametric formulation for the azimuthal magneto-rotational instability

    Full text link
    Asteroseismic measurements of the internal rotation rate in evolved stars pointed out to a lack of angular momentum (AM) transport in stellar evolution models. Several physical processes in addition to hydrodynamical ones were proposed as candidates for the missing mechanism. Nonetheless, no current candidate can satisfy all the constraints provided by asteroseismology. We revisit the role of a candidate process whose efficiency scales with the contrast between the rotation rate of the core and the surface which was proposed to be related to the azimuthal magneto-rotational instability (AMRI) by Spada et al. We compute stellar evolution models of low- and intermediate-mass stars with the parametric formulation of AM transport proposed by Spada et al. until the end of the core-helium burning for low- and intermediate-mass stars and compare our results to the latest asteroseismic constraints available in the post main sequence phase. Both hydrogen-shell burning stars in the red giant branch and core-helium burning stars of low- and intermediate-mass in the mass range 1MM2.5M1 M_{\odot} \lesssim M \lesssim 2.5 M_{\odot} can be simultaneously reproduced by this kind of parametrisation. Given current constraints from asteroseismology, the core rotation rate of post-main sequence stars seems to be well explained by a process whose efficiency is regulated by the internal degree of differential rotation in radiative zones.Comment: Accepted for publication in Astronomy & Astrophysics. 10 pages, 10 figures, 1 appendi

    The JADE code: Coupling secular exoplanetary dynamics and photo-evaporation

    Get PDF
    Close-in planets evolve under extreme conditions, raising questions about their origins and current nature. Two predominant mechanisms are orbital migration, which brings them close to their star, and atmospheric escape under the resulting increased irradiation. Yet, their relative roles remain unclear because we lack models that couple the two mechanisms with high precision on secular timescales. To address this need, we developed the JADE code, which simulates the secular atmospheric and dynamical evolution of a planet around its star, and can include the perturbation induced by a distant third body. On the dynamical side, the 3D evolution of the orbit is modeled under stellar and planetary tidal forces, a relativistic correction, and the action of the distant perturber. On the atmospheric side, the vertical structure of the atmosphere is integrated over time based on its thermodynamical properties, inner heating, and the evolving stellar irradiation, which results, in particular, in photo-evaporation. The JADE code is benchmarked on GJ436 b, prototype of evaporating giants on eccentric, misaligned orbits at the edge of the hot Neptunes desert. We confirm that its orbital architecture is well explained by Kozai migration and unveil a strong interplay between its atmospheric and orbital evolution. During the resonance phase, the atmosphere pulsates in tune with the Kozai cycles, which leads to stronger tides and an earlier migration. This triggers a strong evaporation several Gyr after the planet formed, refining the paradigm that mass loss is dominant in the early age of close-in planets. This suggests that the edge of the desert could be formed of warm Neptunes whose evaporation was delayed by migration. It strengthens the importance of coupling atmospheric and dynamical evolution over secular timescales, which the JADE code will allow simulating for a wide range of systems.Comment: 20 pages, 2 figures, accepted in A&

    Survey for Transiting Extrasolar Planets in Stellar Systems: III. A Limit on the Fraction of Stars with Planets in the Open Cluster NGC 1245

    Full text link
    We analyze a 19-night photometric search for transiting extrasolar planets in the open cluster NGC 1245. An automated transit search algorithm with quantitative selection criteria finds six transit candidates; none are bona fide planetary transits. We characterize the survey detection probability via Monte Carlo injection and recovery of realistic limb-darkened transits. We use this to derive upper limits on the fraction of cluster members with close-in Jupiter-radii, RJ, companions. We carefully analyze the random and systematic errors of the calculation. For similar photometric noise and weather properties as this survey, observing NGC 1245 twice as long results in a tighter constraint on "Hot Jupiter", HJ, companions than observing an additional cluster of similar richness as NGC 1245 for the same length of time as this survey. This survey observed ~870 cluster members. If 1% of stars have 1.5 RJ HJ companions, we expect to detect one planet for every 5000 dwarf stars observed for a month. To reach a ~2% upper limit on the fraction of stars with 1.5 RJ HJ companions, we conclude a total sample size of ~7400 dwarf stars observed for at least a month will be needed. Results for 1.0 RJ companions, without substantial improvement in the photometric precision, will require a small factor larger sample size.Comment: 24 pages, 15 figures, submitted A

    A Uniformly Derived Catalogue of Exoplanets from Radial Velocities

    Get PDF
    A new catalogue of extrasolar planets is presented by re-analysing a selection of published radial velocity data sets using EXOFIT (Balan & Lahav 2009). All objects are treated on an equal footing within a Bayesian framework, to give orbital parameters for 94 exoplanetary systems. Model selection (between one- and two-planet solutions) is then performed, using both a visual flagging method and a standard chi-square analysis, with agreement between the two methods for 99% of the systems considered. The catalogue is to be made available online, and this 'proof of concept' study may be maintained and extended in the future to incorporate all systems with publicly available radial velocity data, as well as transit and microlensing data.Comment: 16 pages, 6 figures, 6 table
    corecore