116 research outputs found

    Gravitational collapse in the postinflationary Universe

    Get PDF
    The Universe may pass through an effectively matter-dominated epoch between inflation and big bang nucleosynthesis during which gravitationally bound structures can form on subhorizon scales. In particular, the inflaton field can collapse into inflaton halos, forming "large scale"structure in the very early universe. We combine N-body simulations with high-resolution zoom-in regions in which the nonrelativistic Schrödinger-Poisson equations are used to resolve the detailed, wave-like structure of inflaton halos. Solitonic cores form inside them, matching structure formation simulations with axion-like particles in the late-time universe. We denote these objects inflaton stars, by analogy with boson stars. Based on a semianalytic formalism we compute their overall mass distribution which shows that some regions will reach overdensities of 1015 if the early matter-dominated epoch lasts for 20 e-folds. The radii of the most massive inflaton stars can shrink below the Schwarzschild radius, suggesting that they could form primordial black holes prior to thermalization. © 2022 American Physical Society

    Post-inflationary structure formation boosted by parametric self-resonance

    Full text link
    The post-inflationary Universe can pass through a long epoch of effective matter-dominated expansion. This era may allow for both the parametric amplification of initial fluctuations and the gravitational collapse of inflaton perturbations. We perform first-of-their-kind high-resolution simulations that span the resonant phase and the subsequent gravitational collapse of the inflaton field by seguing from a full Klein-Gordon treatment of resonance to a computationally efficient Schr\"odinger-Poisson description that accurately captures the gravitational dynamics when most quanta are nonrelativistic. We consider a representative example in which resonance generates O(10−1)\mathcal{O}(10^{-1}) overdensities and gravitational collapse follows promptly as resonance ends. We observe the formation of solitonic cores inside inflaton halos and complex gravitational dynamics on scales of 10−27 m10^{-27}\,\mathrm{m}, greatly extending the possible scope of nonlinear post-inflationary gravitational dynamics.Comment: 11 pages, 8 figure

    Towards optimal cosmological parameter recovery from compressed bispectrum statistics

    Get PDF
    Over the next decade, improvements in cosmological parameter constraints will be driven by surveys of large-scale structure in the Universe. The information they contain can be measured by suitably-chosen correlation functions, and the non-linearity of structure formation implies that significant information will be carried by the three-point function or higher correlators. Extracting this information is extremely challenging, requiring accurate modelling and significant computational resources to estimate the covariance matrix describing correlation between different Fourier configurations. We investigate whether it is possible to reduce this matrix without significant loss of information by using a proxy that aggregates the bispectrum over a subset of configurations. Specifically, we study constraints on ΛCDM parameters from a future galaxy survey combining the power spectrum with (a) the integrated bispectrum, (b) the line correlation function and (c) the modal decomposition of the bispectrum. We include a simple estimate for the degradation of the bispectrum with shot noise. Our results demonstrate that the modal bispectrum has comparable performance to the Fourier bispectrum, even using considerably fewer modes than Fourier configurations. The line correlation function has good performance, but is less effective. The integrated bispectrum is comparatively insensitive to the background cosmology. Addition of bispectrum data can improve constraints on bias parameters and σ8 by a factor between 3 and 5 compared to power spectrum measurements alone. For other parameters, improvements of up to ∼ 20% are possible. Finally, we use a range of theoretical models to explore the sophistication required to produce realistic predictions for each proxy

    First Simulations of Axion Minicluster Halos

    Get PDF
    We study the gravitational collapse of axion dark matter fluctuations in the post-inflationary scenario, so-called axion miniclusters, with N-body simulations. Largely confirming theoretical expectations, overdensities begin to collapse in the radiation-dominated epoch and form an early distribution of miniclusters with masses up to 10−12 M⊙10^{-12}\,M_\odot. After matter-radiation equality, ongoing mergers give rise to a steep power-law distribution of minicluster halo masses. The density profiles of well-resolved halos are NFW-like to good approximation. The fraction of axion dark matter in these bound structures is ∼0.75\sim 0.75 at redshift z=100z=100.Comment: 8 pages, 6 figures, accepted by PR

    Testing one-loop galaxy bias: Cosmological constraints from the power spectrum

    Get PDF
    We investigate the impact of different assumptions in the modeling of one-loop galaxy bias on the recovery of cosmological parameters, as a follow-up of the analysis done in the first paper of the series at fixed cosmology. To carry out these tests we focus on the real-space galaxy-power spectrum from a set of three different synthetic galaxy samples whose clustering properties are meant to match the ones of the CMASS and LOWZ catalogs of BOSS and the SDSS Main Galaxy Sample. We investigate the relevance of allowing for either short range nonlocality or scale-dependent stochasticity by fitting the real-space galaxy autopower spectrum or the combination of galaxy-galaxy and galaxy-matter power spectrum. From a comparison among the goodness of fit (χ2), unbiasedness of cosmological parameters (FoB), and figure of merit (FoM) of the model, we find that a simple four-parameter model (linear, quadratic, cubic nonlocal bias, and constant shot noise) with fixed quadratic tidal bias provides a robust modeling choice for the autopower spectrum of the three galaxy samples, up to kmax ¼ 0.3h Mpc−1 and for an effective volume of 6h−3 Gpc3. Instead, a joint analysis of the two observables fails at larger scales, and a model extension with either higher derivatives or scale-dependent shot noise is necessary to reach a similar kmax, with the latter providing the most accurate and stable results. Throughout the majority of the paper, we fix the description of the nonlinear matter evolution using a hybrid perturbative-N-body approach, RESPRESSO, that was found in the first paper to be the closest performing to the measured matter spectrum. We also test the impact of different modeling assumptions based on perturbative approaches, such as galilean-invariant Renormalised Perturbation Theory (gRPT) and effective field theory (EFT). In all cases, we find the inclusion of scale-dependent shot noise to increase the range of validity of the model in terms of FoB and χ2. Interestingly, these model extensions with additional free parameters do not necessarily lead to an increase in the maximally achievable FoM for the cosmological parameters ðh; Ωch2; AsÞ, which are generally consistent with those of the simpler model at smaller kmax
    • …
    corecore