46 research outputs found

    Anderson transition of three dimensional phonon modes

    Full text link
    Anderson transition of the phonon modes is studied numerically. The critical exponent for the divergence of the localization length is estimated using the transfer matrix method, and the statistics of the modes is analyzed. The latter is shown to be in excellent agreement with the energy level statistics of the disrodered electron system belonging to the orthogonal universality class.Comment: 2 pages and another page for 3 figures, J. Phys. Soc. Japa

    Electronic states of metallic and semiconducting carbon nanotubes with bond and site disorder

    Full text link
    Disorder effects on the density of states in carbon nanotubes are analyzed by a tight binding model with Gaussian bond or site disorder. Metallic armchair and semiconducting zigzag nanotubes are investigated. In the strong disorder limit, the conduction and valence band states merge, and a finite density of states appears at the Fermi energy in both of metallic and semiconducting carbon nanotubes. The bond disorder gives rise to a huge density of states at the Fermi energy differently from that of the site disorder case. Consequences for experiments are discussed.Comment: Phys. Rev. B: Brief Reports (to be published). Related preprints can be found at http://www.etl.go.jp/~harigaya/NEW.htm

    Interplay between quasi-periodicity and disorder in quantum spin chains in a magnetic field

    Full text link
    We study the interplay between disorder and a quasi periodic coupling array in an external magnetic field in a spin-1/2 XXZ chain. A simple real space decimation argument is used to estimate the magnetization values where plateaux show up. The latter are in good agreement with exact diagonalization results on fairly long XX chains. Spontaneous susceptibility properties are also studied, finding a logarithmic behaviour similar to the homogeneously disordered case.Comment: 5 RevTeX pages, 5 Postscript figures include

    Random-mass Dirac fermions in an imaginary vector potential: Delocalization transition and localization length

    Full text link
    One dimensional system of Dirac fermions with a random-varying mass is studied by the transfer-matrix methods which we developed recently. We investigate the effects of nonlocal correlation of the spatial-varying Dirac mass on the delocalization transition. Especially we numerically calculate both the "typical" and "mean" localization lengths as a function of energy and the correlation length of the random mass. To this end we introduce an imaginary vector potential as suggested by Hatano and Nelson and solve the eigenvalue problem. Numerical calculations are in good agreement with the results of the analytical calculations.Comment: 4 page

    Conductance scaling at the band center of wide wires with pure non--diagonal disorder

    Full text link
    Kubo formula is used to get the scaling behavior of the static conductance distribution of wide wires showing pure non-diagonal disorder. Following recent works that point to unusual phenomena in some circumstances, scaling at the band center of wires of odd widths has been numerically investigated. While the conductance mean shows a decrease that is only proportional to the inverse square root of the wire length, the median of the distribution exponentially decreases as a function of the square root of the length. Actually, the whole distribution decays as the inverse square root of the length except close to G=0 where the distribution accumulates the weight lost at larger conductances. It accurately follows the theoretical prediction once the free parameter is correctly fitted. Moreover, when the number of channels equals the wire length but contacts are kept finite, the conductance distribution is still described by the previous model. It is shown that the common origin of this behavior is a simple Gaussian statistics followed by the logarithm of the E=0 wavefunction weight ratio of a system showing chiral symmetry. A finite value of the two-dimensional conductance mean is obtained in the infinite size limit. Both conductance and the wavefunction statistics distributions are given in this limit. This results are consistent with the 'critical' character of the E=0 wavefunction predicted in the literature.Comment: 10 pages, 9 figures, RevTeX macr

    Localization length in Dorokhov's microscopic model of multichannel wires

    Full text link
    We derive exact quantum expressions for the localization length LcL_c for weak disorder in two- and three chain tight-binding systems coupled by random nearest-neighbour interchain hopping terms and including random energies of the atomic sites. These quasi-1D systems are the two- and three channel versions of Dorokhov's model of localization in a wire of NN periodically arranged atomic chains. We find that Lc1=N.ξ1L^{-1}_c=N.\xi^{-1} for the considered systems with N=(1,2,3)N=(1,2,3), where ξ\xi is Thouless' quantum expression for the inverse localization length in a single 1D Anderson chain, for weak disorder. The inverse localization length is defined from the exponential decay of the two-probe Landauer conductance, which is determined from an earlier transfer matrix solution of the Schr\"{o}dinger equation in a Bloch basis. Our exact expressions above differ qualitatively from Dorokhov's localization length identified as the length scaling parameter in his scaling description of the distribution of the participation ratio. For N=3 we also discuss the case where the coupled chains are arranged on a strip rather than periodically on a tube. From the transfer matrix treatment we also obtain reflection coefficients matrices which allow us to find mean free paths and to discuss their relation to localization lengths in the two- and three channel systems

    Density of states in the non-hermitian Lloyd model

    Full text link
    We reconsider the recently proposed connection between density of states in the so-called ``non-hermitian quantum mechanics'' and the localization length for a particle moving in random potential. We argue that it is indeed possible to find the localization length from the density of states of a non-hermitian random ``Hamiltonian''. However, finding the density of states of a non-hermitian random ``Hamiltonian'' remains an open problem, contrary to previous findings in the literature.Comment: 6 pages, RevTex, two-column

    Random bond XXZ chains with modulated couplings

    Get PDF
    The magnetization behavior of q-periodic antiferromagnetic spin 1/2 Heisenberg chains under uniform magnetic fields is investigated in a background of disorder exchange distributions. By means of both real space decimation procedures and numerical diagonalizations in XX chains, it is found that for binary disorder the magnetization exhibits wide plateaux at values of 1+2(p-1)/q, where p is the disorder strength. In contrast, no spin gaps are observed in the presence of continuous exchange distributions. We also study the magnetic susceptibility at low magnetic fields. For odd q-modulations the susceptibility exhibits a universal singularity, whereas for q even it displays a non-universal power law behavior depending on the parameters of the distribution.Comment: 4 pages, 3 figures. Final version to appear in PR

    Dynamics and transport in random quantum systems governed by strong-randomness fixed points

    Get PDF
    We present results on the low-frequency dynamical and transport properties of random quantum systems whose low temperature (TT), low-energy behavior is controlled by strong disorder fixed points. We obtain the momentum and frequency dependent dynamic structure factor in the Random Singlet (RS) phases of both spin-1/2 and spin-1 random antiferromagnetic chains, as well as in the Random Dimer (RD) and Ising Antiferromagnetic (IAF) phases of spin-1/2 random antiferromagnetic chains. We show that the RS phases are unusual `spin metals' with divergent low-frequency spin conductivity at T=0, and we also follow the conductivity through novel `metal-insulator' transitions tuned by the strength of dimerization or Ising anisotropy in the spin-1/2 case, and by the strength of disorder in the spin-1 case. We work out the average spin and energy autocorrelations in the one-dimensional random transverse field Ising model in the vicinity of its quantum critical point. All of the above calculations are valid in the frequency dominated regime \omega \agt T, and rely on previously available renormalization group schemes that describe these systems in terms of the properties of certain strong-disorder fixed point theories. In addition, we obtain some information about the behavior of the dynamic structure factor and dynamical conductivity in the opposite `hydrodynamic' regime ω<T\omega < T for the special case of spin-1/2 chains close to the planar limit (the quantum x-y model) by analyzing the corresponding quantities in an equivalent model of spinless fermions with weak repulsive interactions and particle-hole symmetric disorder.Comment: Long version (with many additional results) of Phys. Rev. Lett. {\bf 84}, 3434 (2000) (available as cond-mat/9904290); two-column format, 33 pages and 8 figure

    Effect of Substitutional Impurities on the Electronic States and Conductivity of Crystals with Half-filled Band

    Full text link
    Low temperature quantum corrections to the density of states (DOS) and the conductivity are examined for a two-dimensional(2D) square crystal with substitutional impurities. By summing the leading logarithmic corrections to the DOS its energy dependence near half-filling is obtained. It is shown that substitutional impurities do not suppress the van Hove singularity at the middle of the band, however they change its energy dependence strongly. Weak disorder due to substitutional impurities in the three-dimensional simple cubic lattice results in a shallow dip in the center of the band. The calculation of quantum corrections to the conductivity of a 2D lattice shows that the well-known logarithmic localization correction exists for all band fillings. Furthermore the magnitude of the correction increases as half-filling is approached. The evaluation of the obtained analytical results shows evidence for delocalized states in the center of the band of a 2D lattice with substitutional impurities
    corecore