10 research outputs found

    Preserving accuracy in GenBank

    Get PDF
    GenBank, the public repository for nucleotide and protein sequences, is a critical resource for molecular biology, evolutionary biology, and ecology. While some attention has been drawn to sequence errors, common annotation errors also reduce the value of this database. In fact, for organisms such as fungi, which are notoriously difficult to identify, up to 20% of DNA sequence records may have erroneous lineage designations in GenBank. Gene function annotation in protein sequence databases is similarly error-prone. Because identity and function of new sequences are often determined by bioinformatic analyses, both types of errors are propagated into new accessions, leading to long-term degradation of the quality of the database. Currently, primary sequence data are annotated by the authors of those data, and can only be reannotated by the same authors. This is inefficient and unsustainable over the long term as authors eventually leave the field. Although it is possible to link third-party databases to GenBank records, this is a short-term solution that has little guarantee of permanence. Similarly, the current third-party annotation option in GenBank (TPA) complicates rather than solves the problem by creating an identical record with a new annotation, while leaving the original record unflagged and unlinked to the new record. Since the origin of public zoological and botanical specimen collections, an open system of cumulative annotation has evolved, whereby the original name is retained, but additional opinion is directly appended and used for filing and retrieval. This was needed as new specimens and analyses allowed for reevaluation of older specimens and the original depositors became unavailable. The time has come for the public sequence database to incorporate a community-curated, cumulative annotation process that allows third parties to improve the annotations of sequences when warranted by published peer-reviewed analyses.Fil: Bidartondo, Martin I.. Imperial College London; Reino Unido. Royal Botanic Gardens; Reino UnidoFil: Bruns, Thomas D.. University of California at Berkeley; Estados UnidosFil: Blackwell, Meredith. Louisiana State University; Estados UnidosFil: Edwards, Ivan. University of Michigan; Estados UnidosFil: Taylor, Andy F. S.. Swedish University of Agricultural Sciences; SueciaFil: Bianchinotti, Maria Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; Argentina. Universidad Nacional del Sur; ArgentinaFil: Padamsee, Mahajabeen. University of Minnesota; Estados UnidosFil: Callac, Philippe. Institut National de la Recherche Agronomique; FranciaFil: Lima, Nelson. Universidade do Minho; PortugalFil: White, Merlin M.. Boise State University; Estados UnidosFil: Barreau Daly, Camila. Centre National de la Recherche Scientifique; Francia. Institut National de la Recherche Agronomique; FranciaFil: Juncai, M. A.. Chinese Academy of Sciences; República de ChinaFil: Buyck, Bart. Museum National d'Histoire Naturelle; FranciaFil: Rabeler, Richard K.. University of Michigan; Estados UnidosFil: Liles, Mark R.. Auburn University; Estados UnidosFil: Estes, Dwayne. Austin Peay State University; Estados UnidosFil: Carter, Richard. Valdosta State University; Estados UnidosFil: Herr Jr., J. M.. University of South Carolina; Estados UnidosFil: Chandler, Gregory. University of North Carolina; Estados UnidosFil: Kerekes, Jennifer. University of California at Berkeley; Estados UnidosFil: Cruse Sanders, Jennifer. Salem College Herbarium; Estados UnidosFil: Galán Marquez, R.. Universidad de Alcalá; EspañaFil: Horak, Egon. Zurich Herbarium; SuizaFil: Fitzsimons, Michael. University of Chicago; Estados UnidosFil: Döering, Heidi. Royal Botanic Gardens; Reino UnidoFil: Yao, Su. China Center of Industrial Culture Collection; ChinaFil: Hynson, Nicole. University of California at Berkeley; Estados UnidosFil: Ryberg, Martin. University Goteborg; SueciaFil: Arnold, A. E.. University of Arizona; Estados UnidosFil: Hughes, Karen. University of Tennessee; Estados Unido

    Organolead Compounds

    No full text

    A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee

    No full text
    Many clinical trials have evaluated the benefit of long-term use of antiplatelet drugs in reducing the risk of clinical thrombotic events. Aspirin and ticlopidine have been shown to be effective, but both have potentially serious adverse effects. Clopidogrel, a new thienopyridine derivative similar to ticlopidine, is an inhibitor of platelet aggregation induced by adenosine diphosphate. METHODS: CAPRIE was a randomised, blinded, international trial designed to assess the relative efficacy of clopidogrel (75 mg once daily) and aspirin (325 mg once daily) in reducing the risk of a composite outcome cluster of ischaemic stroke, myocardial infarction, or vascular death; their relative safety was also assessed. The population studied comprised subgroups of patients with atherosclerotic vascular disease manifested as either recent ischaemic stroke, recent myocardial infarction, or symptomatic peripheral arterial disease. Patients were followed for 1 to 3 years. FINDINGS: 19,185 patients, with more than 6300 in each of the clinical subgroups, were recruited over 3 years, with a mean follow-up of 1.91 years. There were 1960 first events included in the outcome cluster on which an intention-to-treat analysis showed that patients treated with clopidogrel had an annual 5.32% risk of ischaemic stroke, myocardial infarction, or vascular death compared with 5.83% with aspirin. These rates reflect a statistically significant (p = 0.043) relative-risk reduction of 8.7% in favour of clopidogrel (95% Cl 0.3-16.5). Corresponding on-treatment analysis yielded a relative-risk reduction of 9.4%. There were no major differences in terms of safety. Reported adverse experiences in the clopidogrel and aspirin groups judged to be severe included rash (0.26% vs 0.10%), diarrhoea (0.23% vs 0.11%), upper gastrointestinal discomfort (0.97% vs 1.22%), intracranial haemorrhage (0.33% vs 0.47%), and gastrointestinal haemorrhage (0.52% vs 0.72%), respectively. There were ten (0.10%) patients in the clopidogrel group with significant reductions in neutrophils (< 1.2 x 10(9)/L) and 16 (0.17%) in the aspirin group. INTERPRETATION: Long-term administration of clopidogrel to patients with atherosclerotic vascular disease is more effective than aspirin in reducing the combined risk of ischaemic stroke, myocardial infarction, or vascular death. The overall safety profile of clopidogrel is at least as good as that of medium-dose aspirin
    corecore