316 research outputs found

    Wild Bee Conservation within Urban Gardens and Nurseries: Effects of Local and Landscape Management

    Get PDF
    Across urban environments, vegetated habitats provide refuge for biodiversity. Gardens (designed for food crop production) and nurseries (designed for ornamental plant production) are both urban agricultural habitats characterized by high plant species richness but may vary in their ability to support wild pollinators, particularly bees. In gardens, pollinators are valued for crop production. In nurseries, ornamental plants rarely require pollination; thus, the potential of nurseries to support pollinators has not been examined. We asked how these habitats vary in their ability to support wild bees, and what habitat features relate to this variability. In 19 gardens and 11 nurseries in California, USA, we compared how local habitat and landscape features affected wild bee species abundance and richness. To assess local features, we estimated floral richness and measured ground cover as proxies for food and nesting resources, respectively. To assess landscape features, we measured impervious land cover surrounding each site. Our analyses showed that differences in floral richness, local habitat size, and the amount of urban land cover impacted garden wild bee species richness. In nurseries, floral richness and the proportion of native plant species impacted wild bee abundance and richness. We suggest management guidelines for supporting wild pollinators in both habitats.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Rapid increase in simulated North Atlantic dust deposition due to fast change of northwest African landscape during the Holocene

    Get PDF
    Marine sediment records from a series of core sites along the northwest African margin show a sudden increase in North Atlantic dust deposition at about 5&thinsp;ka&thinsp;BP that has been associated with an abrupt end of the African Humid Period (AHP). To assess the causes of the abrupt shift in North Atlantic dust deposition, we explore changes in the Holocene dust cycle and in North African climate and landscape by performing several time slice simulations from 8&thinsp;ka&thinsp;BP until the preindustrial era. To do this, we use the coupled aerosol–climate model ECHAM6–HAM2 including dynamic vegetation and interactive dust, wherein ocean conditions and lake surface area are prescribed for each time slice.We find a rapid increase in simulated dust deposition between 6 and 4&thinsp;ka&thinsp;BP that is fairly consistent with the abrupt change in marine sediment records at around 20°&thinsp;N close to the northwest African margin. At more northern and more remote cores, a significant change in dust deposition is noticeable roughly between 6 and 2&thinsp;ka&thinsp;BP in the simulations as well as in the records, but the change is less sharp compared to the near-margin core sites. The rapid change in simulated dust deposition is caused by a rapid increase in simulated dust emissions in the western Sahara, where the main dust sources for dust transport towards the North Atlantic are located. The sudden increase in dust emissions in the western Sahara is according to our simulations a consequence of a fast decline of vegetation cover from 22 to 18°&thinsp;N that might occur due to vegetation–climate feedbacks or due to the existence of a precipitation threshold on vegetation growth. Additionally, the prescribed gradual reduction of lake area enforces accelerated dust release as highly productive dust sources are uncovered. Concurrently with the continental drying, surface winds in the western Sahara are accelerated. Changes in the Saharan landscape and dust emissions south of 18°&thinsp;N and in the eastern Sahara play a minor role in driving the dynamics of North Atlantic dust deposition at the core sites. Our study identifies spatial and temporal heterogeneity in the transition of the North African landscape. As a consequence, implications from local data records on large-scale climate have to be treated with caution.</p

    Social Context Influence on Urban Gardener Perceptions of Pests and Management Practices

    Get PDF
    Community gardens are important urban green spaces with a variety of social and ecological benefits, one of which is access to healthy food. Similar to rural agriculture, the quantity and quality of the food produced can be compromised by pest damage. In fact, many urban gardeners report crop damages caused by vertebrate and invertebrate pests. Yet, because the food produced in community gardens is mostly for self-consumption and thus not under market quality standards, the damage thresholds and the point when gardeners perceive a pest problem and how they decide to manage it, may greatly vary from gardener to gardener. Here, we investigated how socio-demographic factors and experience affect whether gardeners report having a pest problem and which pest management practices they use. We surveyed 187 gardeners from 18 different urban community gardens in three counties in the California central coast, USA. We also collected information about gardener socio-demographic factors (age, gender, ethnicity), as well as education, and years of experience in agriculture. The majority of gardeners reported having pests in their plots but their ethnicity, the amount of time they spend in the gardens, and whether they work in agricultural-related employment or not influenced the likelihood of reporting pests. We found that the majority of gardeners use curative, non-synthetic practices for managing pests, but that some use preventive practices and some don't do anything to control pests. The likelihood of using practices that are curative depended on gardeners' ethnicity, the amount of time they spend in the gardeners, and their gender. Our results suggest that the agricultural knowledge of urban community gardeners and the practices they use varies greatly and that, in order to be successful, extension programs may need to take this diversity into account when promoting the agroecological paradigm in urban agricultural (UA) systems

    Tree insect pests and pathogens: a global systematic review of their impacts in urban areas

    Get PDF
    Trees contribute greatly to urban environments and human well-being, yet relatively little is known about the extent to which a rising incidence of tree insect pests and pathogens may be affecting these contributions. To address this issue, we undertook a systematic review and synthesis of the diverse global empirical evidence on the impacts of urban tree insect pests and pathogens, using bibliographic databases. Following screening and appraisal of over 3000 articles from a wide range of fields, 100 studies from 28 countries, spanning 1979–2021, were conceptually sorted into a three-part framework: (1) environmental impacts, representing 95 of the studies, including those reporting on tree damage, mortality, reduced growth, and changes in tree function; (2) social impacts were reported by 35 of studies, including on aesthetics, human health, and safety hazards; and (3) economic impacts, reported in 24 of studies, including on costs of pest management, and economic losses. There has been a considerable increase in urban impact studies since 2011. Evidence gaps exist on impacts on climate-regulating capacity, including temperature regulation, water retention, soil erosion, and wind protection, but also on specific hazards, nuisances, human well-being, property damages, and hazard liabilities. As a knowledge synthesis, this article presents the best available evidence of urban tree insect / pathogen impacts to guide policy, management and further research. It will enable us to better forecast how growing threats will affect the urban forest and plan for these eventualities

    Inositol Hexakisphosphate-Induced Autoprocessing of Large Bacterial Protein Toxins

    Get PDF
    Large bacterial protein toxins autotranslocate functional effector domains to the eukaryotic cell cytosol, resulting in alterations to cellular functions that ultimately benefit the infecting pathogen. Among these toxins, the clostridial glucosylating toxins (CGTs) produced by Gram-positive bacteria and the multifunctional-autoprocessing RTX (MARTX) toxins of Gram-negative bacteria have distinct mechanisms for effector translocation, but a shared mechanism of post-translocation autoprocessing that releases these functional domains from the large holotoxins. These toxins carry an embedded cysteine protease domain (CPD) that is activated for autoprocessing by binding inositol hexakisphosphate (InsP6), a molecule found exclusively in eukaryotic cells. Thus, InsP6-induced autoprocessing represents a unique mechanism for toxin effector delivery specifically within the target cell. This review summarizes recent studies of the structural and molecular events for activation of autoprocessing for both CGT and MARTX toxins, demonstrating both similar and potentially distinct aspects of autoprocessing among the toxins that utilize this method of activation and effector delivery
    corecore