3 research outputs found
Feel-Good Requirements: Neurophysiological and Psychological Design Criteria of Affective Touch for (Assistive) Robots
Previous research has shown the value of the sense of embodiment, i.e., being able to integrate objects into one's bodily self-representation, and its connection to (assistive) robotics. Especially, tactile interfaces seem essential to integrate assistive robots into one's body model. Beyond functional feedback, such as tactile force sensing, the human sense of touch comprises specialized nerves for affective signals, which transmit positive sensations during slow and low-force tactile stimulations. Since these signals are extremely relevant for body experience as well as social and emotional contacts but scarcely considered in recent assistive devices, this review provides a requirement analysis to consider affective touch in engineering design. By analyzing quantitative and qualitative information from engineering, cognitive psychology, and neuroscienctific research, requirements are gathered and structured. The resulting requirements comprise technical data such as desired motion or force/torque patterns and an evaluation of potential stimulation modalities as well as their relations to overall user experience, e.g., pleasantness and realism of the sensations. This review systematically considers the very specific characteristics of affective touch and the corresponding parts of the neural system to define design goals and criteria. Based on the analysis, design recommendations for interfaces mediating affective touch are derived. This includes a consideration of biological principles and human perception thresholds which are complemented by an analysis of technical possibilities. Finally, we outline which psychological factors can be satisfied by the mediation of affective touch to increase acceptance of assistive devices and outline demands for further research and development
Feel-Good Requirements: Neurophysiological and Psychological Design Criteria of Affective Touch for (Assistive) Robots
Previous research has shown the value of the sense of embodiment, i.e., being able to integrate objects into one's bodily self-representation, and its connection to (assistive) robotics. Especially, tactile interfaces seem essential to integrate assistive robots into one's body model. Beyond functional feedback, such as tactile force sensing, the human sense of touch comprises specialized nerves for affective signals, which transmit positive sensations during slow and low-force tactile stimulations. Since these signals are extremely relevant for body experience as well as social and emotional contacts but scarcely considered in recent assistive devices, this review provides a requirement analysis to consider affective touch in engineering design. By analyzing quantitative and qualitative information from engineering, cognitive psychology, and neuroscienctific research, requirements are gathered and structured. The resulting requirements comprise technical data such as desired motion or force/torque patterns and an evaluation of potential stimulation modalities as well as their relations to overall user experience, e.g., pleasantness and realism of the sensations. This review systematically considers the very specific characteristics of affective touch and the corresponding parts of the neural system to define design goals and criteria. Based on the analysis, design recommendations for interfaces mediating affective touch are derived. This includes a consideration of biological principles and human perception thresholds which are complemented by an analysis of technical possibilities. Finally, we outline which psychological factors can be satisfied by the mediation of affective touch to increase acceptance of assistive devices and outline demands for further research and development
Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming
District heating networks transport thermal energy from one or more sources to a plurality of consumers. Lowering the operating temperatures of district heating networks is a key research topic to reduce energy losses and unlock the potential of low-temperature heat sources, such as waste heat. With an increasing share of uncontrolled heat sources in district heating networks, control strategies to coordinate energy supply and network operation become more important. This paper focuses on the modeling, control, and optimization of a low-temperature district heating network, presenting a case study with a high share of waste heat from high-performance computers. The network consists of heat pumps with temperature-dependent characteristics. In this paper, quadratic correlations are used to model temperature characteristics. Thus, a mixed-integer quadratically-constrained program is presented that optimizes the operation of heat pumps in combination with thermal energy storages and the operating temperatures of a pipe network. The network operation is optimized for three sample days. The presented optimization model uses the flexibility of the thermal energy storages and thermal inertia of the network by controlling its flow and return temperatures. The results show savings of electrical energy consumption of 1.55%–5.49%, depending on heat and cool demand