12 research outputs found
Photocurrent response of B12As2 crystals to blue light, and its temperature-dependent electrical characterizations
Citation: Gul, R., Cui, Y., Bolotnikov, A. E., Camarda, G. S., Egarievwe, S. U., Hossain, A., . . . James, R. B. (2016). Photocurrent response of B12As2 crystals to blue light, and its temperature-dependent electrical characterizations. Aip Advances, 6(2), 6. doi:10.1063/1.4941937With the global shortage of He-3 gas, researchers worldwide are looking for alternative materials for detecting neutrons. Among the candidate materials, semiconductors are attractive because of their light weight and ease in handling. Currently, we are looking into the suitability of boron arsenide (B12As2) for this specific application. As the first step in evaluating the material qualitatively, the photo-response of B12As2 bulk crystals to light with different wavelengths was examined. The crystals showed photocurrent response to a band of 407- and 470- nm blue light. The maximum measured photoresponsivity and the photocurrent density at 0.7 V for 470 nm blue light at room temperature were 0.25 A.W-1 and 2.47 mA.cm(-2), respectively. In addition to photo current measurements, the electrical properties as a function of temperature (range: 50-320 K) were measured. Reliable data were obtained for the low-temperature I-V characteristics, the temperature dependence of dark current and its density, and the resistivity variations with temperature in B12As2 bulk crystals. The experiments showed an exponential dependence on temperature for the dark current, current density, and resistivity; these three electrical parameters, respectively, had a variation of a few nA to mu A, 1-100 mu A.cm(-2) and 7.6x10(5)-7.7x10(3) Omega.cm, for temperature increasing from 50 K to 320 K. The results from this study reported the first photoresponse and demonstrated that B12As2 is a potential candidate for thermal-neutron detectors. (C) 2016 Author(s)
Recommended from our members
Material properties limiting the performance of CZT gamma-ray detectors
CdZnTe (CZT) nuclear radiation detectors are advanced sensors that utilize innovative technologies developed for wide band-gap semiconductor industry and microelectronics. They open opportunities for new types of room-temperature operating, field deployable instruments that provide accurate identification of potential radiological threats and timely awareness for both the civilian and military communities. Room-temperature radiation detectors are an emerging technology that relies on the use of high-quality CZT crystals whose availability is currently limited by material non-uniformities and the presence of extended defects. To address these issues, which are most critical to CZT sensor developments, we developed X-ray mapping and IR transmission microscopy systems to characterize both CZT crystals and devices. Since a customized system is required for such X-ray measurements, we use synchrotron radiation beams available at BNL's National Synchrotron Light Source. A highly-collimated and high-intensity X-ray beam supports measurements of areas as small as 10 x 10 {micro}m{sup 2}, and allowed us to see fluctuations in collected charge over the entire area of the detector in a reasonable time. The IR microscopy system allows for 3D visualization of Te inclusions and other extended defects. In this paper, we describe the experimental techniques used in our measurements and typical results obtained from CZT samples produced by different suppliers
Variation of electric shielding on virtual Frisch-grid detectors
Because of the low mobility of holes, CdZnTe (CZT) detectors operate as electron-transport-only type devices whose particular geometrical parameters and contacts configurations are specially chosen to minimize the contribution of uncollected holes into the output signal amplitudes (induction effect). Several detector configurations have been proposed to address this problem. One of them employs a large geometrical aspect ratio, parallelepiped-shaped crystal with two planar contacts on the top and bottom surfaces (anode and cathode) and an additional shielding electrode placed on a crystal\u27s side to create the virtual Frisch-grid effect. We studied the effect of the shielding electrode length, as well as its location, on the responses of 6 x 6 x 15 mm(3) virtual Frisch-grid detectors. We found that the length of the shielding electrode placed next to the anode can be reduced to 5 mm with no adverse effects on the device performance. Meanwhile, this allows for charge loss correction by reading the cathode signal
Growth and characterization of detector-grade CdMnTe by the vertical Bridgman technique
We grew Cd1-xMnxTe crystals with a nominal Mn concentration of 5% by the vertical Bridgman growth technique. The compositional variation along the length of the grown ingot was studied by powder X-ray diffraction. The composition was found to be uniform along the growth direction. The achieved resistivity was 1-2.5 x1010 ohm-cm with a mobility-lifetime (μτ) product value for electrons of ∼1.7x10-3 cm2/V. An energy resolution of ∼7.5% at 662 keV was achieved for a 9-mm long Frisch grid detector fabricated from an ingot grown using as-received starting materials
Recommended from our members
Te Inclusions in CZT Detectors: New Method for Correcting Their Adverse Effects
Both Te inclusions and point defects can trap the charge carriers generated by ionizing particles in CdZnTe (CZT) detectors. The amount of charge trapped by point defects is proportional to the carriers’ drift time and can be corrected electronically. In the case of Te inclusions, the charge loss depends upon their random locations with respect to the electron cloud. Consequently, inclusions introduce fluctuations in the charge signals, which cannot be easily corrected. In this paper, we describe direct measurements of the cumulative effect of Te inclusions and its influence on the response of CZT detectors of different thicknesses and different sizes and concentrations of Te inclusions. We also discuss a means of partially correcting their adverse effects