317 research outputs found
DC-CAD : a new software solution for product design
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.Vita.Includes bibliographical references.Many computer aided design (CAD) software packages focus on detailed design and not on early stage, conceptual design. The ability to conceptualize and sketch early versions of a product solution is currently limited to paper and pencil or to inadequate computer-aided industrial design programs (CAID) that focus mainly on surface design, not product design. Working on a design as a group also poses problems since the team can be geographically distributed. In an attempt to address the current inadequacies of CAD systems for distributed conceptual design, my thesis proposes a vision for a new CAD program, DC-CAD. This vision anticipates network-orientated conceptual design, and encompasses capabilities for multiple users to collaborate simultaneously on design, compare & evaluate concept sketches, comment on designs and merge changes from other designers, transfer data to detailed design CAD programs, and record concept changes over time. MIT's Product Engineering Class (2.009) was used as the basis for conceiving the software system. By analyzing design challenges that arose during the course, new software features are suggested to mitigate such problems.(cont.) The end result is a clear vision for a new program, DC-CAD, and a storyboard example of how it could be used in a futuristic 2.009 setting. The thesis closes with recommendations on how to pursue the implementation and realization of such a CAD system.by Mark D. Egan.S.B
Circulating Brain-Derived Neurotrophic Factor and Indices of Metabolic and Cardiovascular Health: Data from the Baltimore Longitudinal Study of Aging
Besides its well-established role in nerve cell survival and adaptive plasticity, brain-derived neurotrophic factor (BDNF) is also involved in energy homeostasis and cardiovascular regulation. Although BDNF is present in the systemic circulation, it is unknown whether plasma BDNF correlates with circulating markers of dysregulated metabolism and an adverse cardiovascular profile.To determine whether circulating BDNF correlates with indices of metabolic and cardiovascular health, we measured plasma BDNF levels in 496 middle-age and elderly subjects (mean age approximately 70), in the Baltimore Longitudinal Study of Aging. Linear regression analysis revealed that plasma BDNF is associated with risk factors for cardiovascular disease and metabolic syndrome, regardless of age. In females, BDNF was positively correlated with BMI, fat mass, diastolic blood pressure, total cholesterol, and LDL-cholesterol, and inversely correlated with folate. In males, BDNF was positively correlated with diastolic blood pressure, triglycerides, free thiiodo-thyronine (FT3), and bioavailable testosterone, and inversely correlated with sex-hormone binding globulin, and adiponectin.Plasma BDNF significantly correlates with multiple risk factors for metabolic syndrome and cardiovascular dysfunction. Whether BDNF contributes to the pathogenesis of these disorders or functions in adaptive responses to cellular stress (as occurs in the brain) remains to be determined
Shedding Light on Restorative Spaces and Faculty Well-Being
The nature of academic work has changed dramatically in recent decades, resulting in part in decreased well-being among faculty. In this article, we discuss these changes and their effects, with a focus on coping through restorative spaces. While faculty members may frequently conceal their restorative spaces in fear of how our time spent in them may be criticized, we seek to shed light on this important coping tool through sharing six unique restorative space narratives. Drawing from these vignettes, we encourage faculty members to share their own stories of restoration in their academic communities to counter the busyness narrative that pervades many academic spaces, and we call on colleges and universities to acknowledge and support the creation of restorative spaces for academics within their institutions
Conserved and Differential Effects of Dietary Energy Intake on the Hippocampal Transcriptomes of Females and Males
The level of dietary energy intake influences metabolism, reproductive function, the development of age-related diseases, and even cognitive behavior. Because males and females typically play different roles in the acquisition and allocation of energy resources, we reasoned that dietary energy intake might differentially affect the brains of males and females at the molecular level. To test this hypothesis, we performed a gene array analysis of the hippocampus in male and female rats that had been maintained for 6 months on either ad libitum (control), 20% caloric restriction (CR), 40% CR, intermittent fasting (IF) or high fat/high glucose (HFG) diets. These diets resulted in expected changes in body weight, and circulating levels of glucose, insulin and leptin. However, the CR diets significantly increased the size of the hippocampus of females, but not males. Multiple genes were regulated coherently in response to energy restriction diets in females, but not in males. Functional physiological pathway analyses showed that the 20% CR diet down-regulated genes involved in glycolysis and mitochondrial ATP production in males, whereas these metabolic pathways were up-regulated in females. The 40% CR diet up-regulated genes involved in glycolysis, protein deacetylation, PGC-1α and mTor pathways in both sexes. IF down-regulated many genes in males including those involved in protein degradation and apoptosis, but up-regulated many genes in females including those involved in cellular energy metabolism, cell cycle regulation and protein deacetylation. Genes involved in energy metabolism, oxidative stress responses and cell death were affected by the HFG diet in both males and females. The gender-specific molecular genetic responses of hippocampal cells to variations in dietary energy intake identified in this study may mediate differential behavioral responses of males and females to differences in energy availability
The BLAST Survey of the Vela Molecular Cloud: Physical Properties of the Dense Cores in Vela-D
The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out
a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela
Molecular Ridge, with the primary goal of identifying the coldest dense cores
possibly associated with the earliest stages of star formation. Here we present
the results from observations of the Vela-D region, covering about 4 square
degrees, in which we find 141 BLAST cores. We exploit existing data taken with
the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their
(single-temperature) spectral energy distributions, assuming a dust emissivity
index beta = 2.0. This combination of data allows us to determine the
temperature, luminosity and mass of each BLAST core, and also enables us to
separate starless from proto-stellar sources. We also analyze the effects that
the uncertainties on the derived physical parameters of the individual sources
have on the overall physical properties of starless and proto-stellar cores,
and we find that there appear to be a smooth transition from the pre- to the
proto-stellar phase. In particular, for proto-stellar cores we find a
correlation between the MIPS24 flux, associated with the central protostar, and
the temperature of the dust envelope. We also find that the core mass function
of the Vela-D cores has a slope consistent with other similar (sub)millimeter
surveys.Comment: Accepted for publication in the Astrophysical Journal. Data and maps
are available at http://blastexperiment.info
BLAST: The Mass Function, Lifetimes, and Properties of Intermediate Mass Cores from a 50 Square Degree Submillimeter Galactic Survey in Vela (l = ~265)
We present first results from an unbiased 50 deg^2 submillimeter Galactic
survey at 250, 350, and 500 micron from the 2006 flight of the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST). The map has resolution ranging
from 36 arcsec to 60 arcsec in the three submillimeter bands spanning the
thermal emission peak of cold starless cores. We determine the temperature,
luminosity, and mass of more than one thousand compact sources in a range of
evolutionary stages and an unbiased statistical characterization of the
population. From comparison with C^(18)O data, we find the dust opacity per gas
mass, kappa r = 0.16 cm^2 g^(-1) at 250 micron, for cold clumps. We find that
2% of the mass of the molecular gas over this diverse region is in cores colder
than 14 K, and that the mass function for these cold cores is consistent with a
power law with index alpha = -3.22 +/- 0.14 over the mass range 14 M_sun < M <
80 M_sun. Additionally, we infer a mass-dependent cold core lifetime of t_c(M)
= 4E6 (M/20 M_sun)^(-0.9) years - longer than what has been found in previous
surveys of either low or high mass cores, and significantly longer than free
fall or likely turbulent decay times. This implies some form of non-thermal
support for cold cores during this early stage of star formation.Comment: Accepted for publication in the Astrophysical Journal. Maps available
at http://blastexperiment.info
Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-Forming Regions
We present an implementation of the iterative flux-conserving Lucy-Richardson
(L-R) deconvolution method of image restoration for maps produced by the
Balloon-borne Large Aperture Submillimeter Telescope (BLAST). We have analyzed
its performance and convergence extensively through simulations and
cross-correlations of the deconvolved images with available highresolution
maps. We present new science results from two BLAST surveys, in the Galactic
regions K3-50 and IC 5146, further demonstrating the benefits of performing
this deconvolution.
We have resolved three clumps within a radius of 4.'5 inside the star-forming
molecular cloud containing K3-50. Combining the well-resolved dust emission map
with available multi-wavelength data, we have constrained the Spectral Energy
Distributions (SEDs) of five clumps to obtain masses (M), bolometric
luminosities (L), and dust temperatures (T). The L-M diagram has been used as a
diagnostic tool to estimate the evolutionary stages of the clumps. There are
close relationships between dust continuum emission and both 21-cm radio
continuum and 12CO molecular line emission.
The restored extended large scale structures in the Northern Streamer of IC
5146 have a strong spatial correlation with both SCUBA and high resolution
extinction images. A dust temperature of 12 K has been obtained for the central
filament. We report physical properties of ten compact sources, including six
associated protostars, by fitting SEDs to multi-wavelength data. All of these
compact sources are still quite cold (typical temperature below ~ 16 K) and are
above the critical Bonner-Ebert mass. They have associated low-power Young
Stellar Objects (YSOs). Further evidence for starless clumps has also been
found in the IC 5146 region.Comment: 13 pages, 12 Figures, 3 Table
Exercise training improves long-term memory in obese mice
Obesity has been linked to a range of pathologies, including dementia. In contrast, regular physical activity is associated with the prevention or reduced progression of neurodegeneration. Specifically, physical activity can improve memory and spatial cognition, reduce age-related cognitive decline, and preserve brain volume, but the mechanisms are not fully understood. Accordingly, we investigated whether any detrimental effects of high-fat diet (HFD)-induced obesity on cognition, motor behavior, adult hippocampal neurogenesis, and brain-derived neurotrophic factor (BDNF) could be mitigated by voluntary exercise training in male C57Bl/6 mice. HFD-induced impairment of motor function was not reversed by exercise. Importantly, voluntary wheel running improved long-term memory and increased hippocampal neurogenesis, suggesting that regular physical activity may prevent cognitive decline in obesity
- …