2,992 research outputs found

    How Stochastic is the Relative Bias Between Galaxy Types?

    Full text link
    Examining the nature of the relative clustering of different galaxy types can help tell us how galaxies formed. To measure this relative clustering, I perform a joint counts-in-cells analysis of galaxies of different spectral types in the Las Campanas Redshift Survey (LCRS). I develop a maximum-likelihood technique to fit for the relationship between the density fields of early- and late-type galaxies. This technique can directly measure nonlinearity and stochasticity in the biasing relation. At high significance, a small amount of stochasticity is measured, corresponding to a correlation coefficient of about 0.87 on scales corresponding to 15 Mpc/h spheres. A large proportion of this signal appears to derive from errors in the selection function, and a more realistic estimate finds a correlation coefficient of about 0.95. These selection function errors probably account for the large stochasticity measured by Tegmark & Bromley (1999), and may have affected measurements of very large-scale structure in the LCRS. Analysis of the data and of mock catalogs shows that the peculiar geometry, variable flux limits, and central surface-brightness selection effects of the LCRS do not seem to cause the effect.Comment: 38 pages, 14 figures. Submitted to Apj. Modified from a chapter of my Ph.D. Thesis at Princeton University, available at http://www-astro-theory.fnal.gov/Personal/blanton/thesis/index.htm

    The APM Galaxy Survey III: An Analysis of Systematic Errors in the Angular Correlation Function and Cosmological Implications

    Get PDF
    We present measurements of the angular two-point galaxy correlation function, w(theta)w(theta), from the APM Galaxy Survey. The performance of various estimators of ww is assessed using simulated galaxy catalogues and analytic arguments. Several error analyses show that residual plate-to-plate errors do not bias our estimates of ww by more than 10310^{-3}. Direct comparison between our photometry and external CCD photometry of over 13,000 galaxies from the Las Campanas Deep Redshift Survey shows that the rms error in the APM plate zero points lies in the range 0.04-0.05 magnitudes, in agreement with our previous estimates. We estimate the effects on ww of atmospheric extinction and obscuration by dust in our Galaxy and conclude that these are negligible. We use our best estimates of the systematic errors in the survey to calculate corrected estimates of ww. Deep redshift surveys are used to determine the selection function of the APM Galaxy Survey, and this is applied in Limber's equation to compute how ww scales as a function of limiting magnitude. Our estimates of ww are in excellent agreement with the scaling relation, providing further evidence that systematic errors in the APM survey are small. We explicitly remove large-scale structure by applying filters to the APM galaxy maps and conclude that there is still strong evidence for more clustering at large scales than predicted by the standard scale-invariant cold dark matter (CDM) model. We compare the APM ww and the three dimensional power spectrum derived by inverting ww, with the predictions of scale-invariant CDM models. We show that the observations require Gamma=Omega0hGamma=Omega_0 h in the range 0.2-0.3 and are incompatible with the value Gamma=0.5Gamma=0.5 of the standard CDM model.Comment: 102 pages, plain TeX plus 41 postscript figures. Submitted to MNRA

    First Structure Formation: A Simulation of Small Scale Structure at High Redshift

    Get PDF
    We describe the results of a simulation of collisionless cold dark matter in a LambdaCDM universe to examine the properties of objects collapsing at high redshift (z=10). We analyze the halos that form at these early times in this simulation and find that the results are similar to those of simulations of large scale structure formation at low redshift. In particular, we consider halo properties such as the mass function, density profile, halo shape, spin parameter, and angular momentum alignment with the minor axis. By understanding the properties of small scale structure formation at high redshift, we can better understand the nature of the first structures in the universe, such as Population III stars.Comment: 31 pages, 14 figures; accepted for publication in ApJ. Figure 1 can also be viewed at http://cfa-www.harvard.edu/~hjang/research

    Forecast B-modes detection at large scales in presence of noise and foregrounds

    Full text link
    We investigate the detectability of the primordial CMB polarization B-mode power spectrum on large scales in the presence of instrumental noise and realistic foreground contamination. We have worked out a method to estimate the errors on component separation and to propagate them up to the power spectrum estimation. The performances of our method are illustrated by applying it to the instrumental specifications of the Planck satellite and to the proposed configuration for the next generation CMB polarization experiment COrE. We demonstrate that a proper component separation step is required in order achieve the detection of B-modes on large scales and that the final sensitivity to B-modes of a given experiment is determined by a delicate balance between noise level and residual foregrounds, which depend on the set of frequencies exploited in the CMB reconstruction, on the signal-to-noise of each frequency map, and on our ability to correctly model the spectral behavior of the foreground components. We have produced a flexible software tool that allows the comparison of performances on B-mode detection of different instrumental specifications (choice of frequencies, noise level at each frequency, etc.) as well as of different proposed approaches to component separation.Comment: 7 pages, 2 tables, 1 figure, accepted by MNRA

    An Analytical Approach to Inhomogeneous Structure Formation

    Full text link
    We develop an analytical formalism that is suitable for studying inhomogeneous structure formation, by studying the joint statistics of dark matter halos forming at two points. Extending the Bond et al. (1991) derivation of the mass function of virialized halos, based on excursion sets, we derive an approximate analytical expression for the ``bivariate'' mass function of halos forming at two redshifts and separated by a fixed comoving Lagrangian distance. Our approach also leads to a self-consistent expression for the nonlinear biasing and correlation function of halos, generalizing a number of previous results including those by Kaiser (1984) and Mo & White (1996). We compare our approximate solutions to exact numerical results within the excursion-set framework and find them to be consistent to within 2% over a wide range of parameters. Our formalism can be used to study various feedback effects during galaxy formation analytically, as well as to simply construct observable quantities dependent on the spatial distribution of objects. A code that implements our method is publicly available at http://www.arcetri.astro.it/~evan/GeminiComment: 41 Pages, 11 figures, published in ApJ, 571, 585. Reference added, Figure 2 axis relabele

    Formation of early-type galaxies from cosmological initial conditions

    Full text link
    We describe high resolution Smoothed Particle Hydrodynamics (SPH) simulations of three approximately MM_* field galaxies starting from \LCDM initial conditions. The simulations are made intentionally simple, and include photoionization, cooling of the intergalactic medium, and star formation but not feedback from AGN or supernovae. All of the galaxies undergo an initial burst of star formation at z5z \approx 5, accompanied by the formation of a bubble of heated gas. Two out of three galaxies show early-type properties at present whereas only one of them experienced a major merger. Heating from shocks and -PdV work dominates over cooling so that for most of the gas the temperature is an increasing function of time. By z1z \approx 1 a significant fraction of the final stellar mass is in place and the spectral energy distribution resembles those of observed massive red galaxies. The galaxies have grown from z=10z=1 \to 0 on average by 25% in mass and in size by gas poor (dry) stellar mergers. By the present day, the simulated galaxies are old (10Gyrs\approx 10 {\rm Gyrs}), kinematically hot stellar systems surrounded by hot gaseous haloes. Stars dominate the mass of the galaxies up to 4\approx 4 effective radii (10\approx 10 kpc). Kinematic and most photometric properties are in good agreement with those of observed elliptical galaxies. The galaxy with a major merger develops a counter-rotating core. Our simulations show that realistic intermediate mass giant elliptical galaxies with plausible formation histories can be formed from \LCDM initial conditions even without requiring recent major mergers or feedback from supernovae or AGN.Comment: accepted for publication in Ap

    The mass function

    Get PDF
    We present the mass functions for different mass estimators for a range of cosmological models. We pay particular attention to how universal the mass function is, and how it depends on the cosmology, halo identification and mass estimator chosen. We investigate quantitatively how well we can relate observed masses to theoretical mass functions.Comment: 14 pages, 12 figures, to appear in ApJ

    Sub-millimetre observations of hyperluminous infrared galaxies

    Full text link
    We present sub-mm photometry for 11 Hyperluminous Infrared Galaxies (HLIRGs) and use radiative transfer models for starbursts and AGN to investigate the IR emission. In all sources both a starburst and AGN are required to explain the IR emission. The mean starburst fraction is 35%, with a range spanning 80% starburst dominated to 80% AGN dominated. In all cases the starburst dominates at rest-frame wavelengths >50 microns, with star formation rates >500 solar masses per year. The trend of increasing AGN fraction with increasing IR luminosity seen in IRAS galaxies peaks in HLIRGs, and is not higher than the fraction seen in bright ULIRGs. The AGN and starburst luminosities correlate, suggesting that a common physical factor, plausibly the dust masses, governs their luminosities. Our results suggest that the HLIRG population is comprised both of ULIRG-like galaxy mergers, and of young galaxies going through their maximal star formation periods whilst harbouring an AGN. The coeval AGN and starburst activity in our sources implies that starburst and AGN activity, and the peak starburst and AGN luminosities, can be coeval in active galaxies generally. When extrapolated to high-z our sources have comparable sub-mm fluxes to sub-mm survey sources. At least some sub-mm survey sources are therefore likely to be comprised of similar galaxy populations to those found in the HLIRG population. It is also plausible from these results that high-z sub-mm sources harbour heavily obscured AGN. The differences in X-ray and sub-mm properties between HLIRGs at z~1 and sub-mm sources at z~3 implies evolution between the two epochs. Either the mean AGN obscuration level is greater at z~3 than at z~1, or the fraction of IR-luminous sources at z~3 that contain AGN is smaller than that at z~1.Comment: 15 pages. Accepted for publication in MNRA

    New and Old Tests of Cosmological Models and Evolution of Galaxies

    Get PDF
    We describe the classical cosmological tests, such as the LogNN-LogSS, redshift-magnitude and angular diameter tests, and propose some new tests of the evolution of galaxies and the universe. Most analyses of these tests treat the problem in terms of a luminosity function and its evolution which can lead to incorrect conclusions when dealing with high redshift sources. We develop a proper treatment in three parts. In the first part we describe these tests based on the isophotal values of the quantities such as flux, size or surface brightness. We show the shortcomings of the simple point source approximation based solely on the luminosity function and consideration of the flux limit. We emphasize the multivariate nature of the problem and quantify the effects of other selection biases due to the surface brightness and angular size limitations. In these considerations the surface brightness profile plays a critical role. In the second part we show that considerable simplification over the complicated isophotal scheme is achieved if these test are carried out in some sort of metric scheme, for example that suggested by Petrosian (1976). This scheme, however, is limited to well resolved sources. Finally, we describe the new tests, which use the data to a fuller extent than the isophotal or metric based tests, and amount to simply counting the pixels or adding their intensities as a function of the pixel surface brightness, instead of dealing with surface brightness, sizes and fluxes of individual galaxies. We show that the data analysis and its comparison with the theoretical models of the distributions and evolution of galaxies has the simplicity of the metric test and utilizes the data more fully than the isophotal test.Comment: 29 pages including 8 figures. http://www-bigbang.stanford.edu/~vahe/papers/finals/newtest.ps. To appear in ApJ, Oct. 199

    The Apm Galaxy Survey IV: Redshifts of Rich Clusters of Galaxies

    Full text link
    We present redshifts for a sample of 229 clusters selected from the APM Galaxy Survey, 189 of which are new redshift determinations. Non-cluster galaxy redshifts have been rejected from this sample using a likelihood ratio test based on the projected and apparent magnitude distributions of the cluster fields. We test this technique using cluster fields in which redshifts have been measured for more than 10 galaxies. Our redshift sample is nearly complete and has been used in previous papers to study the three dimensional distribution of rich clusters of galaxies. 157 of the clusters in our sample are listed in the Abell catalogue or supplement, and the remainder are new cluster identifications.Comment: 15 pages UUencoded compressed postscript. Submitted to Monthly Notices of the R.A.
    corecore