71 research outputs found

    Common variants in CNDP1 and CNDP2, and risk of nephropathy in type 2 diabetes.

    Get PDF
    AIMS/HYPOTHESIS: Several genome-wide linkage studies have shown an association between diabetic nephropathy and a locus on chromosome 18q harbouring two carnosinase genes, CNDP1 and CNDP2. Carnosinase degrades carnosine (β-alanyl-L-: histidine), which has been ascribed a renal protective effect as a scavenger of reactive oxygen species. We investigated the putative associations of genetic variants in CNDP1 and CNDP2 with diabetic nephropathy (defined either as micro- or macroalbuminuria) and estimated GFR in type 2 diabetic patients from Sweden. METHODS: We genotyped nine single nucleotide polymorphisms (SNPs) and one trinucleotide repeat polymorphism (D18S880, five to seven leucine repeats) in CNDP1 and CNDP2 in a case-control set-up including 4,888 unrelated type 2 diabetic patients (with and without nephropathy) from Sweden (Scania Diabetes Registry). RESULTS: Two SNPs, rs2346061 in CNDP1 and rs7577 in CNDP2, were associated with an increased risk of diabetic nephropathy (rs2346061 p = 5.07 × 10(-4); rs7577 p = 0.021). The latter was also associated with estimated GFR (β = -0.037, p = 0.014), particularly in women. A haplotype including these SNPs (C-C-G) was associated with a threefold increased risk of diabetic nephropathy (OR 2.98, 95% CI 2.43-3.67, p < 0.0001). CONCLUSIONS/INTERPRETATION: These data suggest that common variants in CNDP1 and CNDP2 play a role in susceptibility to kidney disease in patients with type 2 diabetes

    Putative role of polymorphisms in UCP1-3 genes for diabetic nephropathy.

    Get PDF
    Increased production of reactive oxygen species (ROS) has been suggested as a cause of diabetic complications. Uncoupling proteins (UCPs) have been ascribed a role in reducing the formation of ROS, and genetic variation in genes encoding for UCPs could thus be putative candidate genes for diabetic nephropathy. To test this hypothesis we searched for association between the A→G (−3862) variant in UCP1, the insertion/deletion (I/D) polymorphism in exon 8 in UCP2, and the C→T (−55) polymorphism in UCP3 and diabetic nephropathy in 218 diabetic patients with normal urinary albumin excretion rate (AER), 216 with micro- or macroalbuminuria, and in 106 control subjects without a family history of diabetes. We did not find any association between the different polymorphisms and diabetic nephropathy, nor did we observe any difference in AER among carriers of different UCP1–3 genotypes. We could, however, confirm the reported association between BMI and the UCP3 −55 C→T polymorphism; patients carrying the T allele had higher BMI than patients homozygous for the C allele (26.4±4.2 vs. 25.3±4.3 kg/m2; P=.01). We conclude that studied polymorphisms in the UCP1–3 genes do not play a major role in the development of micro- or macroalbuminuria in Scandinavian diabetic patients

    Polymorphism in the MHC2TA Gene Is Associated with Features of the Metabolic Syndrome and Cardiovascular Mortality

    Get PDF
    BACKGROUND: Recently, a -168A→G polymorphism in the MHC class II transactivator gene (MHC2TA) was shown to be associated with increased susceptibility to myocardial infarction (MI). AIM: To confirm the association between the MHC2TA -168A→G polymorphism and MI and to study its putative role for microalbuminuria, the metabolic syndrome (MetS) and cardiovascular mortality. MATERIALS AND METHODS: Using an allelic discrimination method we genotyped 11,064 individuals from three study populations: 1) 4,432 individuals from the Botnia type 2 diabetes (T2D) study, 2) 1,222 patients with MI and 2,345 control subjects participating in the Malmö Diet and Cancer study and comprising an MI case-control sample, and 3) 3,065 T2D patients from the Local Swedish Diabetes registry. RESULTS: No association between the -168A→G polymorphism in MHC2TA and MI was observed. However, in the Botnia cohort the AG/GG genotypes were associated with cardiovascular mortality after MI (1.78 [1.09–2.92], p = 0.02). In addition, the AG/GG genotypes were more common in subjects with MetS (40.1% vs. 36.9%, p = 0.03) and in non-diabetic subjects with microalbuminuria (45.4% vs. 36.5%, p = 0.003) compared to control subjects. CONCLUSIONS: A polymorphism in MHC2TA was associated with cardiovascular mortality and predictors of cardiovascular mortality, microalbuminuria and MetS

    Gastrointestinal Symptoms and Dopamine Transporter Asymmetry in Early Parkinson's Disease

    Get PDF
    Background The neurophysiological correlates of gastrointestinal symptoms (GISs) in Parkinson's disease (PD) are not well understood. It has been proposed that in patients with a gastrointestinal origin of PD dopaminergic neurodegeneration would be more symmetric. Objectives The aim is to assess the associations between GISs and asymmetry of nigrostriatal dopaminergic neurodegeneration in PD. Methods Ninety PD patients were assessed using motor and GIS scales and I-123-FP-CIT SPECT. We calculated the asymmetry index and the predominant side of motor symptoms and dopamine transporter (DAT) imaging defect and assessed their association with GISs. Results There were no significant differences in GISs between symmetric and asymmetric dopaminergic defect. Left predominant defect was related to more GIS and higher constipation scores. Conclusions GISs were associated with left predominant reduction in putaminal DAT binding but not asymmetry per se. It remains open whether left-sided DAT deficit is related to more pronounced GI involvement or symptom perception in PD. (c) 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.Peer reviewe

    PGC-1 alpha Signaling Increases GABA(A) Receptor Subunit alpha 2 Expression, GABAergic Neurotransmission and Anxiety-Like Behavior in Mice

    Get PDF
    Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) is a master regulator of mitochondria biogenesis and cell stress playing a role in metabolic and degenerative diseases. In the brain PGC-1 alpha expression has been localized mainly to GABAergic interneurons but its overall role is not fully understood. We observed here that the protein levels of gamma-aminobutyric acid (GABA) type A receptor-alpha 2 subunit (GABAR alpha 2) were increased in hippocampus and brain cortex in transgenic (Tg) mice overexpressing PGC-1 alpha in neurons. Along with this, GABAR alpha 2 expression was enhanced in the hippocampus of the PGC-1 alpha Tg mice, as shown by quantitative PCR. Double immunostaining revealed that GABAR alpha 2 co-localized with the synaptic protein gephyrin in higher amounts in the striatum radiatum layer of the hippocampal CA1 region in the Tg compared with Wt mice. Electrophysiology revealed that the frequency of spontaneous and miniature inhibitory postsynaptic currents (mIPSCs) was increased in the CA1 region in the Tg mice, indicative of an augmented GABAergic transmission. Behavioral tests revealed an increase for anxiety-like behavior in the PGC-1 alpha Tg mice compared with controls. To study whether drugs acting on PPAR gamma can affect GABAR alpha 2, we employed pioglitazone that elevated GABAR alpha 2 expression in primary cultured neurons. Similar results were obtained using the specific PPAR gamma agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino) ethyl]-L-tyrosine hydrate (GW1929). These results demonstrate that PGC-1 alpha regulates GABAR alpha 2 subunits and GABAergic neurotransmission in the hippocampus with behavioral consequences. This indicates further that drugs like pioglitazone, widely used in the treatment of type 2 diabetes, can influence GABAR alpha 2 expression via the PPAR gamma/PGC-1 alpha system.Peer reviewe

    Variability in the CIITA gene interacts with HLA in multiple sclerosis

    Get PDF
    The human leukocyte antigen (HLA) is the main genetic determinant of multiple sclerosis (MS) risk. Within the HLA, the class II HLA-DRB1*15:01 allele exerts a disease-promoting effect, whereas the class I HLA-A*02 allele is protective. The CIITA gene is crucial for expression of class II HLA molecules and has previously been found to associate with several autoimmune diseases, including MS and type 1 diabetes. We here performed association analyses with CIITA in 2000 MS cases and up to 6900 controls as well as interaction analysis with HLA. We find that the previously investigated single-nucleotide polymorphism rs4774 is associated with MS risk in cases carrying the HLA-DRB1*15 allele (P=0.01, odds ratio (OR): 1.21, 95% confidence interval (CI): 1.04-1.40) or the HLA-A*02 allele (P=0.01, OR: 1.33, 95% CI: 1.07-1.64) and that these associations are independent of the adjacent confirmed MS susceptibility gene CLEC16A. We also confirm interaction between rs4774 and HLA-DRB1*15:01 such that individuals carrying the risk allele for rs4774 and HLA-DRB1*15:01 have a higher than expected risk for MS. In conclusion, our findings support previous data that variability in the CIITA gene affects MS risk, but also that the effect is modulated by MS-associated HLA haplotypes. These findings further underscore the biological importance of HLA for MS risk.This work was supported by grants from the Juvenile Diabetes Research Foundation International (2-2000-570 and 1-2001-873), the Swedish Research Council, Swedish Diabetes Foundation, Swedish Child Diabetes Foundation, The Swedish association of persons with neurological disabilities (Neurologiskt Handikappades Riksforbund, NHR), Novo Nordisk Foundation, Magnus Bergvalls Foundation, Neuropromise (LSHM-CT-2005-018637) and the International Multiple Sclerosis Genetics Consortium (IMSGC)Publishe
    • …
    corecore