17 research outputs found

    Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations

    Get PDF
    AbstractThe thylakoid membrane is mainly composed of non-common lipids, so called galactolipids. Despite the importance of these lipids for the function of the photosynthetic reaction centers, the molecular organization of these membranes is largely unexplored. Here we use multiscale molecular dynamics simulations to characterize the thylakoid membrane of both cyanobacteria and higher plants. We consider mixtures of up to five different galactolipids plus phosphatidylglycerol to represent these complex membranes. We find that the different lipids generally mix well, although nanoscale heterogeneities are observed especially in case of the plant membrane. The fluidity of the cyanobacterial membrane is markedly reduced compared to the plant membrane, even considering elevated temperatures at which thermophilic cyanobacteria are found. We also find that the plant membrane more readily undergoes a phase transformation to an inverted hexagonal phase. We furthermore characterized the conformation and dynamics of the cofactors plastoquinone and plastoquinol, revealing of the fast flip-flop rates for the non-reduced form. Together, our results provide a molecular view on the dynamical organization of the thylakoid membrane

    Prediction of Thylakoid Lipid Binding Sites on Photosystem II

    Get PDF
    The thylakoid membrane has a unique lipid composition, consisting mostly of galactolipids. These thylakoid lipids have important roles in photosynthesis. Here, we investigate to what extent these lipids bind specifically to the Photosystem II complex. To this end, we performed coarse-grain MD simulations of the Photosystem II complex embedded in a thylakoid membrane with realistic composition. Based on >85 μs simulation time, we find that monogalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol lipids are enriched in the annular shell around the protein, and form distinct binding sites. From the analysis of residue contacts, we conclude that electrostatic interactions play an important role in stabilizing these binding sites. Furthermore, we find that chlorophyll a has a prevalent role in the coordination of the lipids. In addition, we observe lipids to diffuse in and out of the plastoquinone exchange cavities, allowing exchange of cocrystallized lipids with the bulk membrane and suggesting a more open nature of the plastoquinone exchange cavity. Together, our data provide a wealth of information on protein-lipid interactions for a key protein in photosynthesis

    Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex

    Get PDF
    Plastoquinone (PLQ) acts as an electron carrier between photosystem II (PSII) and the cytochrome b(6)f complex. To understand how PLQ enters and leaves PSII, here we show results of coarse grained molecular dynamics simulations of PSII embedded in the thylakoid membrane, covering a total simulation time of more than 0.5 ms. The long time scale allows the observation of many spontaneous entries of PLQ into PSII, and the unbinding of plastoquinol (PLQol) from the complex. In addition to the two known channels, we observe a third channel for PLQ/PLQol diffusion between the thylakoid membrane and the PLQ binding sites. Our simulations point to a promiscuous diffusion mechanism in which all three channels function as entry and exit channels. The exchange cavity serves as a PLQ reservoir. Our simulations provide a direct view on the exchange of electron carriers, a key step of the photosynthesis machinery

    Design and Properties of Genetically Encoded Probes for Sensing Macromolecular Crowding

    Get PDF
    Cells are highly crowded with proteins and polynucleotides. Any reaction that depends on the available volume can be affected by macromolecular crowding, but the effects of crowding in cells are complex and difficult to track. Here, we present a set of Forster resonance energy transfer (FRET)-based crowding-sensitive probes and investigate the role of the linker design. We investigate the sensors in vitro and in vivo and by molecular dynamics simulations. We find that in vitro all the probes can be compressed by crowding, with a magnitude that increases with the probe size, the crowder concentration, and the crowder size. We capture the role of the linker in a heuristic scaling model, and we find that compression is a function of size of the probe and volume fraction of the crowder. The FRET changes observed in Escherichia collare more complicated, where FRET increases and scaling behavior are observed solely with probes that contain the helices in the linker. The probe with the highest sensitivity to crowding in vivo yields the same macromolecularvolume fractions as previously obtained from cell dry weight. The collection of new probes provides more detailed readouts on the macromolecular crowding than a single sensor

    Identification of osteolineage cell-derived extracellular vesicle cargo implicated in hematopoietic support

    Get PDF
    Osteolineage cell-derived extracellular vesicles (EVs) play a regulatory role in hematopoiesis and have been shown to promote the ex vivo expansion of human hematopoietic stem and progenitor cells (HSPCs). Here, we demonstrate that EVs from different human osteolineage sources do not have the same HSPC expansion promoting potential. Comparison of stimulatory and non-stimulatory osteolineage EVs by next-generation sequencing and mass spectrometry analyses revealed distinct microRNA and protein signatures identifying EV-derived candidate regulators of ex vivo HSPC expansion. Accordingly, the treatment of umbilical cord blood-derived CD34+ HSPCs with stimulatory EVs-altered HSPC transcriptome, including genes with known roles in cell proliferation. An integrative bioinformatics approach, which connects the HSPC gene expression data with the candidate cargo in stimulatory EVs, delineated the potentially targeted biological functions and pathways during hematopoietic cell expansion and development. In conclusion, our study giv

    Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology

    Get PDF
    This is a perspective article entitled “Frontiers in computational biophysics: understanding conformational dynamics of complex lipid mixtures relevant to biology” which is following a CECAM meeting with the same name.Fil: Friedman, Ran. Linnæus University; ArgentinaFil: Khalid, Syma. University of Southampton; Reino UnidoFil: Aponte Santamaría, Camilo. Ruprecht-Karls-Universität Heidelberg; Alemania. Universidad de los Andes; ColombiaFil: Arutyunova, Elena. University of Alberta; CanadáFil: Becker, Marlon. Westfälische Wilhelms Universität; AlemaniaFil: Boyd, Kevin J.. University of Connecticut; Estados UnidosFil: Christensen, Mikkel. University Aarhus; DinamarcaFil: Coimbra, João T. S.. Universidad de Porto; PortugalFil: Concilio, Simona. Universita di Salerno; ItaliaFil: Daday, Csaba. Heidelberg Institute for Theoretical Studies; AlemaniaFil: Eerden, Floris J. van. University of Groningen; Países BajosFil: Fernandes, Pedro A.. Universidad de Porto; PortugalFil: Gräter, Frauke. Heidelberg University; Alemania. Heidelberg Institute for Theoretical Studies; AlemaniaFil: Hakobyan, Davit. Westfälische Wilhelms Universität; AlemaniaFil: Heuer, Andreas. Westfälische Wilhelms Universität; AlemaniaFil: Karathanou, Konstantina. Freie Universität Berlin; AlemaniaFil: Keller, Fabian. Westfälische Wilhelms Universität; AlemaniaFil: Lemieux, M. Joanne. University of Alberta; CanadáFil: Marrink, Siewert J.. University of Groningen; Países BajosFil: May, Eric R.. University of Connecticut; Estados UnidosFil: Mazumdar, Antara. University of Groningen; Países BajosFil: Naftalin, Richard. Colegio Universitario de Londres; Reino UnidoFil: Pickholz, Mónica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Piotto, Stefano. Universita di Salerno; ItaliaFil: Pohl, Peter. Johannes Kepler University; AustriaFil: Quinn, Peter. Colegio Universitario de Londres; Reino UnidoFil: Ramos, Maria J.. Universidad de Porto; PortugalFil: Schiøtt, Birgit. University Aarhus; DinamarcaFil: Sengupta, Durba. National Chemical Laboratory India; IndiaFil: Sessa, Lucia. Universita di Salerno; ItaliaFil: Vanni, Stefano. University Of Fribourg;Fil: Zeppelin, Talia. University Aarhus; DinamarcaFil: Zoni, Valeria. University of Fribourg; SuizaFil: Bondar, Ana-Nicoleta. Freie Universität Berlin; AlemaniaFil: Domene, Carmen. University of Oxford; Reino Unido. University of Bath; Reino Unid

    Martini Force Field Parameters for Glycolipids

    Get PDF
    <p>We present an extension of the Martini coarse-grained force field to glycolipids. The glycolipids considered here are the glycoglycerolipids monogalactosyldiacylglycerol (MGDG), sulfoquinovosyldiacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), and phosphatidylinositol (PI) and its phosphorylated forms (PIP, PIP2), as well as the glycosphingolipids galactosylceramide (GCER) and monosialotetrahexosylganglioside (GM1). The parametrization follows the same philosophy as was used previously for lipids, proteins, and carbohydrates focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar solvents. Bonded parameters are optimized by comparison to lipid conformations sampled with an atomistic force field, in particular with respect to the representation of the most populated states around the glycosidic linkage. Simulations of coarse-grained glycolipid model membranes show good agreement with atomistic simulations as well as experimental data available, especially concerning structural properties such as electron densities, area per lipid, and membrane thickness. Our coarse grained model opens the way to large scale simulations of biological processes in which glycolipids are important, including recognition, sorting, and clustering of both external and membrane bound proteins.</p>

    Molecular Dynamics of Photosystem II Embedded in the Thylakoid Membrane

    Get PDF
    Photosystem II (PSII) is one of the key protein complexes in photosynthesis. We introduce a coarse grained model of PSII and present the analysis of 60 µs molecular dynamics simulations of PSII in both monomeric and dimeric form, embedded in a thylakoid membrane model that reflects its native lipid composition. We describe in detail the setup of the protein complex and the many natural cofactors, and characterize their mobility. Overall we find that the protein subunits and cofactors are more flexible towards the periphery of the complex, as well as near the PLQ exchange cavity and at the dimer interface. Of all cofactors, β-carotenes show the highest mobility. Some of the β-carotenes diffuse in and out of the protein complex via the thylakoid membrane. In contrast to the PSII dimer, the monomeric form adopts a tilted conformation in the membrane, with strong interactions between the soluble PsbO subunit and the glycolipid headgroups. Interestingly, the tilted conformation causes buckling of the membrane. Together, our results provide an unprecedented view of PSII dynamics on a microsecond time scale. Our data may be used as basis for the interpretation of experimental data as well as for theoretical models describing exciton energy transfer
    corecore