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ABSTRACT 

Cells are highly crowded with proteins and polynucleotides. Any reaction that depends on the 

available volume can be affected by macromolecular crowding, however the effects of 

crowding in cells are complex and difficult to track. Here, we present a set of Förster resonance 

energy transfer (FRET)-based crowding-sensitive probes and investigate the role of the linker 

design. We investigate the sensors in vitro and in vivo and by molecular dynamics simulations. 

We find that in vitro all the probes can be compressed by crowding, with a magnitude that 

increases with the probe size, the crowder concentration, and the crowder size. We capture the 

role of the linker in a heuristic scaling model, and we find that compression is a function of size 

of the probe and volume fraction of the crowder. The FRET changes observed in the cell are 

more complicated, where FRET-increases and scaling behavior are observed solely with probes 

that contain the helices in the linker. The probe with the highest sensitivity to crowding in vivo 

yields the same macromolecular volume fractions as previously obtained from cell dry weight. 

The collection of new probes provides more detailed readouts on the macromolecular crowding 

than a single sensor. 

 

INTRODUCTION 

The high macromolecule content in the cell, 300-400 mg/mL (1), influences the 

physicochemical properties in its interior. A protein in this crowded environment will endure 

forces due to excluded volume and nonspecific chemical interactions with the other 

macromolecules (2-4). Its thermodynamic activity will furthermore be affected by the solvent 

properties. When introducing a protein in a crowded solution, the excluded volume reduces the 

entropy of the system, by reducing the number of possibilities the crowders can be arranged. 

The entropic penalty can be relieved by reducing the volume of the introduced protein. In the 

cell, other interactions are able to attenuate this entropic effect, resulting in net effects that are 

often different to what would be predicted solely due to steric exclusion (5-12). This makes that 

crowding effects are unpredictable in cells, and can be overshadowed by other nonspecific 

interactions if the excluded volume effects are small.  

To isolate excluded volume effects from other effects we developed previously a sensor for 

quantification of macromolecular crowding (13), based on Förster resonance energy transfer 

(FRET). The original probe consists of mCitrine (YFP, yellow fluorescent protein) and 

mCerulean3 (14) (CFP, cyan fluorescent protein), which form a FRET pair, and are connected 

by a flexible linker (Fig. 1A). Upon placement in a crowded environment the probe will 

populate more condensed conformations, leading the FRET pair to be closer to each other. This 

crowding-induced compression of the whole protein is quantified by an increase in FRET 

efficiency between the fluorescent proteins. We validated the sensor in bacterial and 

mammalian cells, and observed FRET efficiencies comparable to ~20% w/w Ficoll in bacterial 

cells.  

Other sensors have been developed, including a synthetic sensor based on polyethylene glycol 

that is compressed by macromolecular crowding (15), and a genetically-encoded sensor that is 

based on protein-induced destabilization of an impaired YFP (16). The PEG-based sensor may 

function via a similar mechanism as our sensor, while the mechanism behind the destabilization 

of the YFP sensor is not yet clear. Crowding can also be inferred from diffusion measurements, 

among other methods (17), but these are strongly dependent on other parameters such as 

confinement, viscosity, and nonspecific attractive interactions. 

Given the multiplicity of parameters that act on a crowding sensor, we argued that a set of 

sensors would yield a more informative readout of the macromolecular crowding in cells 

compared to a single sensor. This is especially relevant when in cell calibration of the sensor is 
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prohibited, for example during time-lapse recordings. The structural simplicity of the original 

crowding sensor allows for a relatively straightforward design process to i) determine the effect 

of structural variations in the linker on the quantification of macromolecular crowding, and ii) 

to uncover potential linker-induced artifacts interfering with the in cell readouts.  

We designed a set of 9 probes (Table 1). We varied the linker and kept the fluorophores the 

same to exclude effects specific to the fluorescent proteins (18). The length of the helices and 

the random coil domains are varied to allow assessment if the linker flexibility and the distance 

between the fluorophores are affected by crowding (19,20). In here, we find that the 

compression of the sensors scales with probe size and volume fraction of crowder. In the cell, 

only probes with an α-helix in the linker are compressed, pointing to additional contributions 

to the FRET besides excluded volume when the helix is absent. This set of probes provides 

more detailed information on the effect of crowding in the cell than a single sensor. 

 

MATERIALS AND METHODS 

Plasmid preparation 

The gene encoding the GE probe was obtained from GeneArt and subcloned into the pACYC 

vector in the SalI and BamHI sites. DNA encoding the linker region of E6G6, E6G2, E4G6, 

E4G2, G12, or G24 (PMK plasmid, GeneArt) was subcloned in the XhoI and SacI of pACYC 

carrying the gene for the GE probe. Genes encoding the E6, GE, and the GE probe with the 

fluorescent proteins swapped (GES probe), all in pRSET A, were obtained from GeneArt. The 

gene encoding the G18 linker in the PMK plasmid (GeneArt) was subcloned in between the 

BamHI and NcoI sites in the GE gene in pRSET A. To place the E6G2 and G12 genes from 

pACYC into pRSET A, the genes encoding E6G2 and G12 in pACYC plasmid were amplified 

by PCR (Forward primer: CAAAGGTGAAGAGCTCTTTACCGGTGTTGTTCCGATTC and 

reverse primer: TTATTTGTACAGCTCGTCCATGCCCAGTG) and digested with SacI and 

EcoRI, and subsequently ligated into pRSET-A containing the GE gene. E. coli MG1655 was 

transformed with the pACYC plasmids, while E. coli BL21(DE3) pLysS (Promega) was 

transformed with the pRSET A plasmids.  

 

Protein expression  

E. coli BL21 (GES, GE, E6, G18, G12, or E6G2 in pRSET A) or E. coli MG1655 (G24, 

E6G6, E4G2, or E4G6 in pACYC) were grown to OD600 0.6 in LB medium (10 g/L tryptone, 

5 g/L yeast extract, 10 g/L NaCl), and induced with 0.1 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) (pRSET A) or 0.1% rhamnose (pACYC). After incubation at 25 

°C overnight, the cells were spun down at 3000g for 30min, resuspended in buffer A (10 mM 

sodium phosphate (NaPi), 100 mM NaCl, 0.1 mM phenylmethylsulfonyl fluoride (PMSF), pH 

7.4) and lysed in a tissue lyser. The lysate was cleared by centrifugation, supplemented with 10 

mM imidazole and the proteins were purified by nickel-nitrilotriacetic acid Sepharose 

chromatography (wash/elution buffer: 20/250 mM imidazole, 50 mM NaPi, 300 mM NaCl, pH 

7.4). The constructs were further purified by Superdex 200 10/300GL size-exclusion 

chromatography (Amersham Biosciences) in 10 mM NaPi, pH 7.4. The expression and 

purification were analyzed by 12% SDS-PAGE, and the bands were visualized by in-gel 

fluorescence and subsequent Coomassie staining. Fractions containing pure protein were 

aliquoted and stored at -80 °C. 

 

Fluorometry 

The crowding agent was dissolved in 10 mM NaPi, 100 mM NaCl, 2 mg/ml BSA, pH 7.4. 

The pH was checked after dissolution of crowding agent; crowding agents such as lysozyme 
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and ovomucoid decreased the pH significantly and, considering the pH sensitivity of mCitrine 

(13), were not tested further. A 1.0-ml solution was placed in a quartz cuvette, and its 

fluorescence emission spectrum after excitation at 420 nm (for mCitrine and mCerulean3) and 

515 nm (for mCitrine as control) were recorded at 20 °C on a Fluorolog-3 (Jobin Yvon) 

spectrofluorometer. Subsequently, the constructs were added, mixed by pipette and measured. 

The background spectrum from before the addition of the probe was subtracted. 

 

FRET efficiency determination 

The fluorescence emission spectrums were recorded as before (13): 2.0 µL of Proteinase K 

(Aldrich, 5.0 mg/mL in water) was added and the solution was mixed by pipette. After 

incubation at 20°C for 1 min, the reaction was quenched by addition of 2.0 µL PMSF (100 mM 

in isopropanol). Longer incubation times before quenching did not alter the spectra. The 

fluorescence emission spectrum was subsequently recorded. The fluorescence spectra did not 

change after addition of PMSF. The FRET efficiency was calculated using (21):  

FRET efficiency = 1 −  
𝐹𝐷𝐴

𝐹𝐷
      (1) 

in which FDA is the intensity of mCerulean3 before the cleavage, and FD the intensity of 

mCerulean3 after proteolytic cleavage of the linker. 

 

Confocal fluorescence microscopy 

Ratiometric fluorescence emission measurements of E. coli by scanning confocal 

fluorescence microscopy were carried out as reported previously (13). In short, E. coli strain 

BL21(DE3) pLysS containing pRSET-A with the gene encoding the probe (GE, G18, E6, G12, 

or E6G2) was inoculated from a glycerol stock into 10 ml of filter-sterilized MOPS minimal 

medium supplemented with 20 mM glucose. The culture was grown to OD600 = 0.1-0.2. In 

parallel, the same E. coli strain with the pRSET-A plasmid with a gene encoding for a non-

fluorescent protein (monomeric streptavidin), functioning as a control and background, was 

grown to the same OD600. For both cultures the proteins were expressed in the absence of added 

inducer. The fluorescent cells were mixed with the non-fluorescent cells so as to obtain equal 

amounts of each cell-type. The combined cells were washed by centrifugation and resuspension 

in MOPS minimal medium with the desired amount of NaCl, in the absence of K2HPO4 and 

glucose to prevent adaptation of the cells. 10 µL of this mixture was added to a coverslip 

modified with (3-aminopropyl) triethoxysilane (Aldrich). For imaging, the coverslip was 

mounted on a laser-scanning confocal microscope (Zeiss LSM 710), the FRET pair was excited 

using a 405-mm diode laser, and the emission were split into a 450-505 nm channel and a 505-

797 nm channel. 

For each cell, the 505-797 nm channel (mCitrine) intensity was plotted versus the 450-505 

nm channel (mCerulean3) intensity (see e.g. Fig. S9). The brightest cells were not analyzed, to 

minimize artifacts from intermolecular FRET, influences of high expression levels on cell 

contents, or incomplete maturation of the fluorescent proteins. The data was fitted to a linear 

equation using a least squares approach, using the slope as the average FRET ratio. 

The microscope was calibrated as described previously (13), briefly: A solution of the desired 

concentration Ficoll PM70 (20 µL, 10 mM NaPi, 2 mg/ml BSA, 100 mM NaCl, pH 7.4.) was 

placed onto a coverslip. The microscope settings were the same as the in vivo measurement. 

Three pictures were taken from different locations in the same drop, and this was repeated in 3 

different drops. The intensities were determined for the complete image. The same procedure 

was followed for drops without fluorescent proteins for the background measurement. The 

ratios were calculated by simple linear regression, using the same methodology as for the in 

vivo measurements. These ratios were plotted versus the ratios obtained in fluorometry, to 
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obtain a conversion relation and hence provide direct comparison between fluorescence 

microscopy and fluorometry.  

      

Molecular Dynamics Simulations 

The coordinates of CPF and YPF were obtained by homology modeling with SWISS-

MODEL (22). For both CFP and YFP the PDB ID: 4en1 was used as a template structure. In 

Pymol (23) the two proteins were connected by the two different linkers, creating two different 

sensors: GE and G18. The systems were coarse grained and solvated using respectively the 

martinize.py and insane tools (24,25). NaCl was added to a concentration of approximately 160 

mM and on top of that extra sodium ions were added to neutralize the systems. In the PEG 

systems, the concentration of PEG was approximately 20% (w/w) (excluding the ions and the 

sensor); the PEG polymers consist of 136 monomers. The ubiquitin (UBQ) structure was taken 

from PDB ID: 1UBQ. In the EG and G18 systems the concentration of ubiquitin was 

approximately 27% and 20% (w/w), respectively. The composition of the various simulated 

systems is given in Table S1. 

The systems were simulated using Martini 2.2 (26) in conjunction with EINeDyn (26) to 

restrain the secondary structural motifs. For PEG, the parameterization by Lee et al. was used 

(27). Test simulations indicated that the fluorescent proteins showed a high tendency to stick 

together, a known problem of the Martini force field (28). To increase the kinetics of the 

opening-closing transition of the sensor, the sensor was therefore made less ‘sticky’. This was 

done by decreasing the Lennard-Jones epsilon value by 0.6 kJ/mol for all interactions between 

all protein beads (sensor and ubiquitin) and between the protein beads and the PEG beads. No 

other interactions were modified, i.e. water-water, water-protein, PEG-PEG. Note, decreasing 

the Lennard-Jones interactions does not result in denaturation of the fluorophores because of 

the use of EINeDyn. The EINeDyn bonds were only placed on the fluorophores and on the 

alpha helical parts of the sensor, i.e. there were no elastic bonds between the two different α-

helices, the two fluorophores or between a fluorophore and an α-helix.  

All simulations were performed using GROMACS 4.5.5 (29) with the standard Martini 

parameters (26), at 310 K and at 1 bar pressure. A time step of 20 fs was used for the simulations 

without PEG, but a 10 fs time step had to be used in the simulations containing PEG for 

numerical stability. The systems were run for 15 µs and the trajectory was saved every 1 ns. 

The first 1 µs simulation time was discarded as equilibration time. This results in a total analysis 

time of 14 µs per simulation.  

The simulations were analyzed by calculating the FRET efficiencies. For the calculation of 

the FRET efficiencies, Eq. S3 was used, with r as the distance between the backbone (BB) 

beads of the fluorophores. The Förster radius R0 in Eq. S3 was calculated from 

R0=0.211*(κ2QnJ)1/6. We assumed that R0 = 5.4 nm is correct for κ2= 2/3 (30), and calculated 

the remaining factor QnJ based on this. Subsequently, we calculated the real R0 for each 

conformation based on QnJ being known, with the orientation factor κ determined for each 

conformation from the transition dipole moments of the fluorophores as calculated by 

Ansbacher et al. (31), mapped to the vector between the BB and the SC1 bead. The resulting 

data are presented in Table S2. From the FRET efficiencies the ‘apparent distance’ between the 

fluorophores was calculated. Note, for a more elaborate comparison of simulation data and 

FRET efficiencies, see the work of Hoefling et al. (32). For the calculation of the density maps 

(Fig. 3C), the tools developed by Castillo et al. were used (33).  
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RESULTS 

Design and in vitro characterization  

The probes were designed in a stepwise manner with the parent GE probe serving as a starting 

point (Table 1). We removed the outer (GSG)6 sections to decrease the probe size (the E6Gn 

family), and varied the length of the inner (GSG)n section, resulting in the E6G2 and E6G6 

probes. We shortened the α-helix (the E4Gn family), and again varied the internal (GSG)n 

section, resulting in the E4G2 and E4G6 probes. To assess whether the two helices interact with 

each other, we also removed one (EAAAK)6 helix and a (GSG)6 coil from the GE probe to 

obtain the E6 probe. Finally, we removed the α-helices and varied the size of the (GSG)n linker, 

the Gn family.  

 

Fig. 1. Characterization of the probes. (A) The previously developed GE probe served as a 

template for structural variation in the linker region. (B) Normalized fluorescence emission 

spectra of the probes in dilute buffer (10 mM NaPi, 100 mM NaCl, 2 mg/mL BSA, pH 7.4), 

showing the range of FRET efficiencies covered. (C) The ideal chain model predicts that the 

FRET efficiencies of the probes in the absence of crowder decrease when α-helices are included 

in the linker region, as observed experimentally (Table S3 and Fig. S2). Arrow shows direction 

of increasing α-helix content. 

 

Table 1. Probe Design and properties 

Acronym Linker sequence FRET efficiencya 

(%) 

Distance from FRETb 

(nm) 

 

                            with α-helix 

GE -

(GSG)6A(EAAAK)6A(GSG)6A(EAAAK)6A

(GSG)6- 

11±1 7.6±0.2 
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E6G6 -A(EAAAK)6A(GSG)6A(EAAAK)6A- 14.0±0.2 7.3±0.1 

E6G2 -A(EAAAK)6A(GSG)2A(EAAAK)6A- 14.2±0.5 7.3±0.1 

E4G6 -A(EAAAK)4A(GSG)6A(EAAAK)4A- 22.0±0.4 6.7±0.1 

E4G2 -A(EAAAK)4A(GSG)2A(EAAAK)4A- 22.8±0.4 6.6±0.1 

E6 -(GSG)6A(EAAAK)6A(GSG)6- 22.4±0.5 6.6±0.1 

                           without α-helix 

G24 -(GSG)24- 28.4±0.5 6.3±0.1 

G18 -(GSG)18- 34.6±0.6 6.0±0.1 

G12 -(GSG)12- 40.9±0.2 5.7±0.1 

a Efficiencies determined from the increase in mCerulean3 emission upon proteolytic 

cleavage as described in Materials and Methods. b Distances determined from FRET 

efficiencies using the Förster equation. See Table S3 for more linker properties. Errors are 

standard deviations based on three independent repeats. 

These probes were first characterized in detail in the absence of crowders. We expressed and 

purified the probes and determined their properties in phosphate buffer by fluorometry (Fig. 

1b). The probes exhibit a wide range of FRET efficiencies as observed from the fluorescence 

emission intensities of mCitrine at 525 nm. For a direct quantification, we measured the increase 

in mCerulean3 emission upon proteolytic cleavage of the probes (Fig. S1), from which the 

FRET efficiencies and the corresponding distances (r0) between the fluorophores were 

determined (Table 1). The wide range of FRET efficiencies from 11±1 to 40.9±0.2% (n=3) 

correspond to distances between the fluorophores of 7.6±0.2 and 5.7±0.1 nm, respectively. 

These average distances obtained from FRET are likely smaller than the real average distance 

between the fluorophores (see Table S2). 

The FRET efficiencies vary with length and rigidity of the linker: The FRET efficiency of the 

Gn family is clearly higher than those of the E4Gn family, which, in turn, is higher than the 

E6Gn family (see also Table S3 and Fig. S2). We can understand these observations 

qualitatively using simple models from polymer physics (Fig. 1C) (Supporting Material) 

(34,35). These models predict that replacing part of a flexible linker with a more rigid structure 

will increase the probability that the two ends are far apart, explaining the lower FRET 

efficiencies of the helix-containing probes. Furthermore, the probability of the two ends being 

far apart is higher the longer the rigid part of the linker, thus explaining the difference between 

the E4Gn and E6Gn families. A quantitative comparison is more complicated because the 

persistence length is not known, it is not clear where precisely the helices end, and the 

fluorescent proteins also need to be considered. Nevertheless, this simple analysis suggests that 

the probes exhibit polymer-like behavior. These findings are in line with previous findings on 

random coil and α-helix containing linkers (19,20). 
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Compression relates to probe size and Ficoll concentration  

The effect of crowding on the probes was first studied by addition of the crowding agent 

Ficoll 70. In all cases the mCitrine/mCerulean3 ratio increased with Ficoll 70 (Fig. 2A). With 

the exception of G12, the ratio increased stronger with shorter linkers, which is caused by their 

proximity to the Förster radius (5.4 nm) (30), where the distance dependence of the FRET 

efficiency is highest. 

We determined the distances (r) between the fluorophores in all cases from the FRET 

efficiency (Fig. S3) and quantified the relative compression by dividing with the distance in the 

absence of crowder (r0). The addition of crowder changes the refractive index, inducing a small 

deviation in FRET efficiency (36). It would be extremely complicated to correct for the 

refractive index, because the intervening medium between the fluorophores contains on average 

less crowder, and the linker contributes to the refractive index. Assuming that the refractive 

index is 1.4, we underestimate crowding-induced FRET increases by 1-2%. To verify that 

fluorophore orientation has a negligible effect on the FRET efficiency, we constructed a probe 

with a circular permuted YFP. Ficoll compresses this probe in the same manner as the GE probe 

(Fig. S4), indicating that we only probe the distance changes. When comparing all the probes, 

we found that all probes are compressed with Ficoll, but that the larger probes also show a larger 

compression (Fig. 2B,C), of up to 85% of their original size. 

 

 

Fig. 2. Determination of in vitro crowding-induced compression of the probes. (A) Ratiometric 

fluorescence change of the probes upon titration with Ficoll 70. (B) Compression (r/r0) of the 

probes upon addition of Ficoll 70. r0 is the probe radius without crowder, r with crowder, both 

calculated from the FRET efficiencies. (C) The dependence of the compression r/r0 on the probe 

radius r0, at different Ficoll concentrations; the same data as in panel B. (D) The effect of BSA 

and γ-Globulins at different weight% on r/r0. (E) The effect of various small molecules and 

macromolecular crowders, all at 10 % w/w, on r/r0. (F) The compressions obtained for the 

various crowders plotted versus their hydrodynamic radius (Table S4). All experiments in 10 

mM NaPi, 100 mM NaCl, 2 mg/mL BSA, pH 7.4. Data represent the mean ± SD of three 

independent experiments. 
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Compression is related to crowder radius  

Next, we determined compression of the probes with different crowding agents. We selected 

the GE, E6, and G18 probes, which represent the extreme and intermediate length scales and 

rigidities of the other probes well. Bovine serum albumin (BSA) induced compression of the 

probes with a similar trend and concentration dependence as Ficoll 70 (Fig. 2D). The probes 

expanded in the presence of small amounts (1% w/w) of γ-Globulins, which suggests that γ-

Globulins bind the probes. The probes did not expand further by addition of 10% w/w γ-

Globulins, which could be due to saturation of binding sites, balancing excluded volume effects 

(9), or the decrease of attractive interactions of concentrated antibodies (37,38). We observed 

compression of the three probes in the presence of a variety of macromolecular crowders based 

on the carbohydrates Ficoll 70kD and 400kD, Dextran 40kD and 6kD, and the proteins BSA 

and ovalbumin, all at 10% w/w (Fig. 2E). In all these cases the probes compressed with a 

magnitude that depended on the probe and the crowder (Fig. 2F): Compression followed probe 

size (GE>E6>G18), while the dependence on the crowder hydrodynamic radius (Table S5), for 

fixed crowder weight%, seemed to level off at ~2-4 nm. We have previously observed the same 

behavior for GE in the presence of PEGs of varying weight (13). Small molecules such as 

sucrose and glycine betaine (each at 10% w/w) did not compress the probes (Fig. 2E). The small 

apparent expansion of the probes of ~1-2% can at least partially be explained by the increase in 

refractive index upon dissolution of these solutes. Application of a mix of the four most 

abundant metabolites in Escherichia coli at their in vivo concentrations (potassium salts of 100 

mM glutamate, 20 mM glutathione, 15 mM fructose bisphosphate, and 10 mM ATP) (39), or 

the application of high concentrations of salt (up to 500 mM NaCl) did not lead to an appreciable 

change in the FRET value (Fig. S5 and S6). 

In summary, these experiments show that the probes respond to macromolecular crowding by 

compression, which is related to the weight percent of crowder, the probe radius, and the 

crowder radius. The compression is absent for small molecules and crowders with associative 

interactions. 

 

Molecular dynamics simulations confirm dependence on radii  

To verify our experimental observations on the probe- and crowder-size dependent 

compression, we performed coarse grained molecular dynamics simulations (40,41). We 

simulated the GE and G18 probes in the absence and presence of PEG 6000 or ubiquitin (Fig. 

3, Table 2), which represent a polymer- and a protein-based crowder. In experiment, we found 

that 20 %w/w PEG 6000 compresses G18 to an r/r0 of ~0.88, and we previously (13) found for 

GE an r/r0 of ~0.80. The simulations showed qualitative agreement with these experimental 

results: in both cases the addition of PEG resulted in compression of the probes, as was clearly 

apparent from the densities (Fig. 3C), leading to higher FRET efficiencies. The compression 

r/r0 obtained from the simulations was ~0.60 for GE, and ~0.71 for G18, which confirmed the 

probe-size dependence qualitatively. The compression in the simulations was higher than in the 

experiments, which may relate to the difference in timeframe or the simulation parameters. 

Note, due to the coarse-graining of the interactions, the MD results are qualitative rather than 

quantitative. The behavior of the probes both with and without crowder could be described by 

a single population of FRET efficiencies on this timescale, albeit that in the presence of PEG 

both in the case of G18 and the GE probe an additional population appeared that represented 

one long-term event (at ~7 µs for GE in Fig. 3B) where the two fluorophores dimerize. Although 

such events could indeed occur in experiment, the average FRET in the simulations increased 

upon addition of PEG without this additional population in a similar manner, and hence was 

not required to explain compression of the probes. The addition of ubiquitin (Table 2) lead to a 

smaller compression of the sensor, r/r0 ~0.93, which is consistent with the smaller radius of 
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ubiquitin. These data show that crowding-induced compression can be mimicked by simulation, 

and that the radii dependence is also observed in the simulations. 

 

Fig. 3. Coarse-grained molecular dynamic simulations of the GE and G18 probes. (A) 

Snapshots of conformations of the GE probe without crowder and in the presence of 

polyethylene glycol 6000 (PEG). For clarity, only one probe conformation is highlighted. (B) 

Time traces of the distance and calculated FRET efficiency of the GE probe with (red) and 

without (black) PEG. (C) Normalized number densities of the GE and G18 probes projected in 

2D space, plotted on distance coordinates, with and without crowding with PEG. The scale bar 

applies to the x- and y-axis. 

Table 2. FRET Efficiencies and distances obtained from 14 µs molecular dynamic simulations. 

Errors are standard errors calculated from the means of blocks of 3.5 µs. 

 FRET 

Efficiency (%) 

Distance from 

FRET (nm) 

GE 

No crowder 2.7±0.4 9.8±0.2 

Ubiquitin 4.3±1.6 9.1±0.5 

PEG 6000 36.6±4.4 5.9±0.2 

G18 
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No crowder 13.8±0.4 7.3±0.04 

Ubiquitin 18.4±2.6 6.9±0.2 

PEG 6000 54.9±15.7 5.2±0.9 

 

Probe compression in living cells depends on the linker composition  

We selected 5 probes for in vivo assessment of probe performance. We expressed the probes 

in E. coli BL21(DE3) and analyzed the cells in the exponential growth phase in MOPS minimal 

media at OD 0.1-0.2. Under these conditions the concentration of the probes is constant over 

time (Fig. S7). In gel fluorescence of lysed cells under measurement condition show that the 

probes are intact (Fig. S8). The intensities of the fluorophore emissions were determined by 

scanning confocal microscopy after excitation of mCerulean3 at 405 nm and subsequent 

determination of the mCitrine/mCerulean3 emission ratio (Fig. S9). As a further control, we 

constructed a probe in which the mCitrine and the mCerulean3 are swapped. The swapped probe 

has similar fluorescent ratios as the parent GE probe (1.03±0.01 versus 1.06±0.02), further 

confirming the presence of intact probes. 

Fig. 4A shows that the in cell mCitrine/mCerulean3 ratios of the probes followed the same 

order as in vitro. We imposed osmotic upshifts by adding NaCl to the medium to test whether 

the probes are sensitive to crowding in cells (13). The osmotic upshift was performed in the 

absence of potassium and glucose to prevent (rapid) recovery of the cell volume, and the cells 

were measured within 10 minutes to prevent alterations of the proteome. Furthermore, because 

the probes are less sensitive to small molecules (vide supra), we expect that the increase in 

crowding will dominate the readouts. Only a small transient increase of the cytoplasmic pH 

from ~7.9 to ~8.2 will occur upon a 500 mM NaCl-induced osmotic upshift (42), and hence the 

pH is unlikely to influence our measurements. The osmotic upshift increased the 

mCitrine/mCerulean3 ratio of the helix-containing probes (E6, E6G2), similar to the increase 

of the GE probe we reported previously (13). The ratios of the Gn family, on the other hand, 

barely increase. The GE and G18 probes diffuse roughly as rapid as GFP (Fig. S10), which 

diffuses without binding to slow moving cell components, showing that the difference in 

response between families is not due to binding to a slow diffusing cell component that alters 

FRET efficiency. 

 

 

Fig. 4. Analysis of the compression of the probes in E. coli cells. (A) YFP/CFP ratios of the 

different probes, and change in YFP/CFP ratio upon osmotic upshift. Data represent the mean 

± SD of three independent experiments. (B) Compression (r/r0) of the probes in cells and effect 
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of osmotic upshift. (C) Dependence of the compression on the (EAAAK)/(GSG) ratio in the 

linker. Inset: In vitro dependence on the (EAAAK)/(GSG) ratio in the presence of 10 (black), 

20 (red), and 30 (blue) % w/w Ficoll 70. Data taken from Fig. 2B. 

We calibrated the YFP/CFP ratios in cells with the ratios of purified probes in the presence of 

Ficoll in microscopy. Next, we relate this microscopy data to fluorometry ratios (Fig. S11). This 

allowed converting in cell data to in vitro fluorescence ratios, and thereby determination of 

FRET efficiencies and subsequent FRET distances (Fig. 4B). The conversion emphasizes the 

observed trends of Fig. 4A: The Gn probes were much less compressed in the cell and their 

FRET distances are within ~4% of the distances in dilute buffer. However, the presence of α-

helices (E6, E6G2 and GE) gave rise to a significant compression of over 10%. The 

compression relates with the helical content of the probes, described as the (EAAAK)/(GSG) 

ratio (Fig 4C). The compression did not follow the (EAAAK)/(GSG) ratio in the case of Ficoll 

crowding in vitro (Fig. 4C, inset). Indeed, in the cell the E6G2 probe was more compressed 

than the larger GE probe, which relates to a higher (EAAAK)/(GSG) ratio of 6.0 versus 0.67, 

respectively. This data shows that, contrary to the in vitro conditions, the helices in the linker 

region are required for the compression of this set of probes by macromolecular crowding in 

living cells. 

 

Compression follows a scaling relation  

Next, we developed a description that could capture our observations. We first noticed that the 

in vitro compressions are qualitatively similar to those obtained for intrinsic disordered proteins 

in the presence of PEG as reported by Schuler and coworkers (43). They explained the behavior 

of intrinsic disordered proteins by a renormalized Flory-Huggins theory, and hence this theory 

would likely fit the results of the probes used here upon adjustment of the fitting parameters. 

Scaled particle theory, Gaussian cloud scaled particle theory and Flory-Huggins theory did not 

fit their data, suggesting these theories would also not fit our data. 

Kang et al. proposed to explain the data of Schuler and coworkers using an alternative 

approach (44). Although their approach is not microscopic, we find that it gives a surprisingly 

accurate description that is simple enough to use on in cell data, something a truly microscopy 

description would not allow. The work of Kang et al. is based on the idea of two competing 

length scales, namely the size of the probe in the absence of crowding, r0, and the distance 

between crowders, D. If these are the only important length-scales, then the compression of the 

probe in the presence of crowding would fulfill a scaling relation, that is, r/r0 = f(r0/D); r/r0 

depends on the ratio of the size of the probe under dilute conditions (r0) to the distance between 

crowders (D). The distance between crowders can be readily estimated from the volume fraction 

of crowder (φ, Table S4) and the radius of the crowder (σ, Table S5) as D ∝ σ/φ1/3. We tested 

this ansatz on the measured compression of the probes by Ficoll 70 (Fig. 2A), by plotting r/r0 

versus (r0/σ)φ1/3. Interestingly, the results for all probes collapse onto a single master curve (Fig. 

5A), showing that the probes are well described by this scaling relation. 
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Fig. 5. Scaling behavior of crowding-induced probe compression. (A) Compression of the 

probes by Ficoll 70 fulfills a scaling relation, involving the probe size, the crowding agent 

radius, σ, (Table S5) and the crowder volume fraction, Φ (determined from the partial specific 

volume; Table S4). Data reproduced from Fig. 2B, with additional data for the GE probe with 

1, 2, 3, 4, 5 % w/w Ficoll 70 to show the plateau at low volume fractions. (B) Scaling relation 

of the compression for a range of crowding agents. Data reproduced from Fig. 2E; additionally, 

the PEG data of 0.2, 1.5, 4, 6, 10, 20, 35 kD at 10% w/w with the GE probe is taken from ref. 

13, and displayed in more detail in Fig. S12. The values for the small molecules sucrose, 

betaine, and PEG 0.2 kD are off scale and not displayed. (C) Plotting the data of panel B against 

r0φ
1/3 rather than (r0/σ)φ1/3 results in a collapse of the data onto a single master curve. The line 

is a linear fit of the probes with all crowding agents that are within the stated boundary 

conditions (hence excluding small molecules and γ-globulins), and excluding the data point 

without crowder that is not in the linear regime. (D) Comparison of in cell compression with 

the modified scaling relation of Fig. 5C, using reported volume fractions for E. coli (34). The 

line is from Fig. 5C, and experimental data from Fig. 4B. 

The relation works well when comparing different probes, but the data no longer falls onto a 

single master curve when comparing different crowding agents (Fig. 5B). However, we find 

empirically that by excluding the size of the crowder the results again largely fall upon a single 

master curve (Fig. 5C). The residual dependence on the crowder size (Fig. S12) is much smaller 

than that in Fig. 5B. The heuristic master curve describes the compression of a large number of 

probes by several crowding agents. Importantly, we make the same observation when re-

analyzing the data of Schuler and coworkers on crowding effects on a set of intrinsically 

disordered proteins (Fig. S13) (43). Thus, the same scaling relation is fulfilled by two 

independent experimental data sets. A potential justification for our modification of the original 

scaling ansatz may be that other distances than the two originally included (probe size and 

distance between crowders) could have a compensating effect. Notably, the crowder size is not 

explicitly included in the original ansatz but only enters implicitly through converting the 

distance between crowders to volume fraction; including this length scale explicitly could 
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compensate for the implicit dependence from the distance between crowders. The volume 

fraction itself is a function of crowder size and number density and hence these parameters do 

influence probe compression. Furthermore, the crowder size is not constant throughout the 

concentration regime, as crowding agents such as Ficoll and PEG compress. 

We prefer to use our modified scaling relation because of its simplicity and predictive nature. 

However, we stress that three important boundary conditions must be satisfied to use this 

empirical scaling relation as a “calibration curve” (Fig. 5C; line) for interpretation of in cell 

measurements: i) compression occurs at values of r0φ
1/3>2 nm; ii) for crowder sizes < 1-2 nm 

the compression becomes less; and iii) attractive interactions expand the probes. In our dataset, 

Ficoll 70 contributes most to the curve, and small deviations may occur when using crowders 

with a different radius. A range of other factors including the shape of the crowder, interactions 

of the crowders with itself, solvent properties, and intramolecular interactions were apparently 

not strong enough to change the scaling behavior. 

We next apply the relation to interpret the dependence of in cell compression on the probe 

structure. We use previously determined macromolecule volume fractions inside cells from dry 

weight (45), and can thereby test the scaling ansatz also on in cell data, using osmotic upshifts 

to increase the intracellullar crowding. We find that, even though the cytoplasm provides a 

vastly more complicated environment than the artificial crowding agents, the helix-containing 

probes (here GE, E6, and E6G2) follow the master curve measured with artificial crowders 

reasonably well, both without and with osmotic upshift (Fig. 5D, Fig S14). Especially the in 

cell data for the E6G2 probe collapses very well onto the calibration line. The Gn family yields 

smaller compressions inside cells than predicted on the basis of the calibration line, also with 

osmotic upshift. This behavior can also be seen directly by comparing the lack of increase in 

ratio of the Gn after osmotic upshift (Fig. 4A) versus the addition of Ficoll (Fig. 2A). When we 

perform the same analysis but instead use the calibration curve to calculate the volume fraction, 

we see that the volume fractions reflect the (EAAAK)/(GSG) ratio in the linker (Fig S15): The 

E6G2 probe yields the highest volume fractions, followed by GE and E6, while G18 and G12 

sense the lowest volume fractions. As expected based on Fig. 5D, good agreement with the 

volume fractions obtained from cell dry weight is obtained for those determined with the E6G2 

probe. 

Thus, compression of this set of probes follows a scaling behavior involving the size of the 

probe and the volume fraction of crowder, while in the cell deviation from the scaling behavior 

occurs for linkers that do not contain the helices. 

 

DISCUSSION 

In this paper, we describe a set of FRET-based compression-sensitive protein probes. We find 

that (a) all probes sense macromolecular crowding, with a magnitude that depends on the probe 

size and crowder volume fraction (which is a function of crowder radius and concentration), 

and (b) the in cell sensitivity depends on the linker composition, where only the α-helix 

containing probes show an increase in FRET efficiency. 

This set of probes provides more detailed information on macromolecular crowding effects. It 

also highlights the difference between in cell and in vitro readouts of FRET-based probes, and 

warrants care when quantitatively interpreting in cell data. We calibrate the sensors by means 

of osmotic upshift, and comparison with known macromolecule volume fractions and in vitro 

crowding. This is currently the best approach to vary the internal crowding, because other 

methods such as overexpression of proteins take longer and would lead to adaptation of cells. 

We previously showed that the volume fraction increase as determined with the GE probe 

corresponds well to the cell volume decrease induced with an osmotic upshift (13). In vitro 

compression is eventually limited by the solubility of crowding agent, because the probes can 
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be compressed continuously, and hence it is not possible to saturate the probe readout in a cell. 

The absence of a FRET increase with osmotic upshift for the Gn family makes it less likely that 

the higher FRET in cells for the other probes are due to photophysical artifacts such as 

maturation or stability.  

It is not directly clear from the data why the Gn family is not compressed in the cell. In lieu 

of direct evidence, we can hypothesize that nonspecific chemical interactions with the linker 

region occur, which can be prevented by the (EAAAK)n peptides. More specifically, the 

shielding of the peptide backbone by the helical conformation could prevent interactions 

between the backbone and the crowder. This would also explain the dependence on the 

(EAAAK)/(GSG) ratio. Additionally, the helices contain ion-paired lysines and glutamates, 

which are preferentially hydrated over interactions with other amino acids, and are the most 

common paired amino acids on cytosolic protein surfaces (46). The incorporation of paired 

lysines and glutamates would prevent interactions, allowing steric effects to govern the 

conformation. In general, the observation that in cell behavior is different compared to in vitro 

crowding is not very surprising: Chemical nonspecific interactions seem to dominate over the 

steric crowding for most reported small proteins (6-12). Hence this is the most likely 

explanation, and it is remarkable that the steric compression appears to be regained by the 

presence of these helices. Various other explanations can be put forward, such as specific 

interactions with the helices or helix destabilization. However, considering the high stability of 

the (EAAAK) helix (47), and the absence of precedence of helix destabilization inside cells, we 

deem these explanations less likely. Specific autocleavage of the (EAAAK) helix has been 

reported (48), but we do not see new bands appearing after cell lysis, nor do we see fluorescence 

changes in long term in vitro experiments. Another possibility would be repulsive charge-charge 

interactions of the helices with their environment. However, we do not see the same trends in 

vitro with the negatively charged bovine serum albumin. Small molecules such as betaine, 

sucrose, and PEG 0.2 kD compensate the readout, but do so to a very small extent in the 

presence of crowders (data not shown), and do not allow the distinction between the families 

that we see in the cell. 

It is highly encouraging that the E6G2 probe yields volume fractions equal to previous 

determined volume fractions from dry weight measurements (45). Both our experiments and 

the dry-weight determination have been performed under the same conditions. However, the in 

cell readout should not only depend on the volume fraction (or weight% of macromolecules), 

but also on how well a cytoplasm is mixed. If for example higher crowded regions (due to an 

increased affinity between the cytosolic proteins, possibly combined with size-sorting by the 

depletion interaction) or regions with only smaller crowders exist (49,50), it may induce 

inhomogeneous distribution of the sensor to the less crowded regions. Inhomogeneous 

distribution could potentially occur under for example starvation conditions, or when other 

stresses are imposed on the cell (51-53). In these cases the probes may indicate changes in the 

superstructure of the cytoplasm, especially when combined with classical volume fraction 

determinations from cell dry weight and probe diffusion measurements (45,17). 

 

CONCLUSIONS 

We present a new set of crowding-sensitive probes, which we characterize extensively with a 

variety of methods and conditions. We show that the compression induced by crowding agents 

fulfills a scaling relation involving the volume fraction of crowder and the radius of the probe. 

In the cell, we find that (EAAAK) repeat units in the linker region of the proteins are required 

to compress the probes and to obtain the same scaling behavior as in vitro. The Gn family of 

probes serves as a control that is not compressed, while the E6G2 probe is compressed most in 
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E. coli. We encourage to use this set of sensors to observe possible effects other than steric 

repulsion, and also because the new probes provide higher sensitivity.  

 

SUPPORTING MATERIAL 

Supporting material and methods, 14 figures, 4 tables, amino acid sequences are available at… 
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