10 research outputs found
Towards a standardization of biomethane potential tests
8 PĂĄginasProduction of biogas from different organic materials is a most interesting source of renewable energy. The biomethane potential (BMP) of these materials has to be determined to get insight in design parameters for anaerobic digesters. A workshop was held in June 2015 in Leysin Switzerland to agree on common solutions to the conundrum of inconsistent BMP test results. A discussion covers actions and criteria that are considered compulsory ito accept and validate a BMP test result; and recommendations concerning the inoculum substrate test setup and data analysis and reporting ito obtain test results that can be validated and reproduced.The workshop in Leysin, Switzerland, has been financed by the Swiss Federal Office for Energy, and co-sponsored by Bioprocess Control Sweden AB, Lund, Sweden. The authors thank Alexandra Maria Murray for editing the English
Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey
A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in AyaĆ, Turkey. The cells were straight to curved rods, 0.4â0.6 Όm in diameter and 3.5â10 Όm in length. Spores were terminal and round. The temperature range for growth was 40â80°C, with an optimum at 70°C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H2, and CO2. Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H2 and CO2 formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNAâDNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans