474 research outputs found

    Multi-decade changes in pollen season onset, duration, and intensity: a concern for public health?

    Get PDF
    Longitudinal shifts in pollen onset, duration, and intensity are public health concerns for the growing number of individuals with pollen sensitization. National analyses of long-term pollen changes are influenced by how a plant's main pollen season (MPS) is defined. Prior Swiss studies have inconsistently applied MPS definitions, leading to heterogeneous conclusions regarding the magnitude, directionality, and significance of multi-decade pollen trends. We examined national pollen data in Switzerland between 1990 and 2020, applying six MPS definitions (2 percentage-based and 4 threshold-based) to twelve relevant allergenic plants. We analyzed changes in pollen season using both linear regression and locally estimated scatterplot smoothing (LOESS). For 4 of the 12 plant species, there is unanimity between definitions regarding earlier onset of pollen season (p < 0.05), with magnitude of 31-year change dependent on specific MPS definition (hazel: 9-18 days; oak: 5-13 days; grasses: 8-25 days; and nettle/hemp: 6-25 days). There is also consensus (p < 0.05) for modified MPS duration among hazel (21-104% longer), nettle/hemp (8-52% longer), and ash (18-38% shorter). Between-definition agreement is highest for MPS intensity analysis, with consensus for significant increases in seasonal pollen quantity (p < 0.05) among hazel, birch, oak, beech, and nettle/hemp. The largest relative intensification is noted for hazel (110-146%) and beech (162-237%). LOESS analysis indicates that these multi-decade pollen changes are typically nonlinear. The robustness of MPS definitions is highly dependent on annual pollen accumulation, with definition choice particularly influential for long-term analysis of low-pollen plants such as ragweed. We identify systematic differences between MPS definitions and suggest future aerobiologic studies apply multiple definitions to minimize bias. In summary, national pollen onset, duration, and intensity have shifted for some plants in Switzerland, with MPS definition choice affecting magnitude and significance of these variations. Future public health research can determine whether these temporal and quantitative pollen changes correlate with longitudinal differences in population pollen sensitization

    A prospective cohort study of adolescents' memory performance and individual brain dose of microwave radiation from wireless communication

    Get PDF
    BACKGROUND: The potential impact of microwave radiofrequency electromagnetic fields (RF-EMF) emitted by wireless communication devices on neurocognitive functions of adolescents is controversial. In a previous analysis, we found changes in figural memory scores associated with a higher cumulative RF-EMF brain dose in adolescents. OBJECTIVE: We aimed to follow-up our previous results using a new study population, dose estimation, and approach to controlling for confounding from media usage itself. METHODS: RF-EMF brain dose for each participant was modeled. Multivariable linear regression models were fitted on verbal and figural memory score changes over 1 y and on estimated cumulative brain dose and RF-EMF related and unrelated media usage (n = 669-676). Because of the hemispheric lateralization of memory, we conducted a laterality analysis for phone call car preference. To control for the confounding of media use behaviors, a stratified analysis for different media usage groups was also conducted. RESULTS: We found decreased figural memory scores in association with an interquartile range (IQR) increase in estimated cumulative RF-EMF brain dose scores: 0.22 (95% CI: 0.47, 0.03; IQR: 953 mJ/kg per day) in the whole sample, 0.39 (95% CI: 0.67, 0.10; IQR: 953 mJ/kg per day) in right-side users (n = 532), and 0.26 (95% CI: 0.42, 0.10; IQR: 341 mJ/kg per day) when recorded network operator data were used for RF-EMF dose estimation = 274). Media usage unrelated to RF-EMF did not show significant associations or consistent patterns, with the exception of consistent (nonsignificant) positive associations between data traffic duration and verbal memory. CONCLUSIONS: Our findings for a cohort of Swiss adolescents require confirmation in other populations but suggest a potential adverse effect of RF-EMF brain close on cognitive functions that involve brain regions mostly exposed during mobile phone use

    Time to harmonize national ambient air quality standards

    Get PDF
    The World Health Organization has developed ambient air quality guidelines at levels considered to be safe or of acceptable risk for human health. These guidelines are meant to support governments in defining national standards. It is unclear how they are followed.; We compiled an inventory of ambient air quality standards for 194 countries worldwide for six air pollutants: PM2.5, PM10, ozone, nitrogen dioxide, sulphur dioxide and carbon monoxide. We conducted literature and internet searches and asked country representatives about national ambient air quality standards.; We found information on 170 countries including 57 countries that did not set any air quality standards. Levels varied greatly by country and by pollutant. Ambient air quality standards for PM2.5, PM10 and SO2 poorly complied with WHO guideline values. The agreement was higher for CO, SO2 (10-min averaging time) and NO2.; Regulatory differences mirror the differences in air quality and the related burden of disease around the globe. Governments worldwide should adopt science based air quality standards and clean air management plans to continuously improve air quality locally, nationally, and globally

    Gesundheitsrisiko Mobilfunkstrahlung? Was ändert sich mit 5G?

    Get PDF
    Exposure of the population to radiofrequency electromagnetic fields (RF-EMF) is dominated by the use of wireless communication devices close to the body. Exposure from transmitters far from the body is on average several orders of magnitude below the international guideline values. With increasing mobile data usage and the associated use of higher frequencies for 5G, a densification of the mobile network is to be expected. However, this will not necessarily increase the overall RF-EMF exposure of the population, as mobile phones emit less with better signal quality. 5G is a technological advancement of the previous mobile radio technology with the same biophysical properties. So far, no health effects below the guideline limits have been consistently demonstrated for RF-EMF. Biological effects such as changes of the electrical activity of the brain or the oxidative balance were observed for high local exposure in the range of the exposure guideline limits. According to current knowledge, they do not represent a health risk

    Association of activities related to pesticide exposure on headache severity and neurodevelopment of school-children in the rural agricultural farmlands of the Western Cape of South Africa

    Get PDF
    OBJECTIVE: Children and adolescents living in agricultural areas are likely to be exposed to mixtures of pesticides during their daily activities, which may impair their neurodevelopment. We investigated various such activities in relation to headache severity and neurodevelopment of school-children living in rural agricultural areas in the Western Cape of South Africa. METHOD: We used baseline date from 1001 school-children of the Child Health Agricultural Pesticide Cohort Study in South Africa (CapSA) aged 9-16 from seven schools and three agriculture areas in the Western Cape. Questionnaires were administrated to assess activities related to pesticide exposure and health symptoms addressing four types of activities: 1) child farm activities related to pesticide handling, 2) eating crops directly from the field, 3) contact with surface water around the field, and 4) seen and smelt pesticide spraying activities. Neurocognitive performance across three domains of attention, memory and processing speed were assessed by means of an iPad-based cognitive assessment tool, Cambridge Automated NeuroPsychological Battery (CANTAB). Headache severity was enquired using a standard Headache Impact Test (HIT-6) tool. Cross-sectional regression analysis was performed. RESULTS: About 50% of the cohort report to have ever been engaged in activities related to pesticide exposure including farm activities, eating crops directly from the field and leisure activities. Headache severity score was consistently increased in relation to pesticide-related farm activities (score increase of 1.99; 95% CI: 0.86, 3.12), eating crops (1.52; 0.41, 2.67) and leisure activities of playing, swimming or bathing in nearby water (1.25; 0.18, 2.33). For neurocognitive outcomes, an overall negative trend with pesticide exposure-related activities was observed. Among others, involvement in pesticide-related farm activities was associated with a lower multi-tasking accuracy score (-2.74; -5.19, -0.29), while lower strategy in spatial working memory (-0.29; -0.56; -0.03) and lower paired associated learning (-0.88; -1.60, -0.17) was observed for those who pick crops off the field compared to those who do not pick crops off the field. Eating fruits directly from the vineyard or orchard was associated with a lower motor screening speed (-0.06; -0.11, -0.01) and lower rapid visual processing accuracy score (-0.02; -0.03, 0.00). CONCLUSIONS: Children who indicate activities related to pesticide exposure may be at higher risk for developing headaches and lower cognitive performance in the domains of attention, memory and processing speed. However, self-reported data and cross-sectional design are a limitation. Future research in CapSA will consider pesticide exposure estimations via urinary biomarkers and longitudinal assessment of cognitive functions

    Rationale and Design of a Panel Study Investigating Six Health Effects of Airborne Pollen: The EPOCHAL Study

    Get PDF
    Background: While airborne pollen is widely recognized as a seasonal cause of sneezing and itchy eyes, its effects on pulmonary function, cardiovascular health, sleep quality, and cognitive performance are less well-established. It is likely that the public health impact of pollen may increase in the future due to a higher population prevalence of pollen sensitization as well as earlier, longer, and more intense pollen seasons, trends attributed to climate change. The effects of pollen on health outcomes have previously been studied through cross-sectional design or at two time points, namely preceding and within the period of pollen exposure. We are not aware of any observational study in adults that has analyzed the dose-response relationship between daily ambient pollen concentration and cardiovascular, pulmonary, cognitive, sleep, or quality of life outcomes. Many studies have relied on self-reported pollen allergy status rather than objectively confirming pollen sensitization. In addition, many studies lacked statistical power due to small sample sizes or were highly restrictive with their inclusion criteria, making the findings less transferable to the “real world.”Methods: The EPOCHAL study is an observational panel study which aims to relate ambient pollen concentration to six specific health domains: (1) pulmonary function and inflammation; (2) cardiovascular outcomes (blood pressure and heart rate variability); (3) cognitive performance; (4) sleep; (5) health-related quality of life (HRQoL); and (6) allergic rhinitis symptom severity. Our goal is to enroll 400 individuals with diverse allergen sensitization profiles. The six health domains will be assessed while ambient exposure to pollen of different plants naturally varies. Health data will be collected through six home nurse visits (at approximately weekly intervals) as well as 10 days of independent tracking of blood pressure, sleep, cognitive performance, HRQoL, and symptom severity by participants. Through repeated health assessments, we aim to uncover and characterize dose-response relationships between exposure to different species of pollen and numerous acute health effects, considering (non-)linearity, thresholds, plateaus and slopes.Conclusion: A gain of knowledge in pollen-health outcome relationships is critical to inform future public health policies and will ultimately lead toward better symptom forecasts and improved personalized prevention and treatment

    Modelling the vertical gradient of nitrogen dioxide in an urban area

    Get PDF
    Introduction Land use regression models environmental predictors to estimate ground-floor air pollution concentration surfaces of a study area. While many cities are expanding vertically, such models typically ignore the vertical dimension. Methods We took integrated measurements of NO 2 at up to three different floors on the facades of 25 buildings in the mid-sized European city of Basel, Switzerland. We quantified the decrease in NO 2 concentration with increasing height at each facade over two 14-day periods in different seasons. Using predictors of traffic load, population density and street configuration, we built conventional land use regression (LUR) models which predicted ground floor concentrations. We further evaluated which predictors best explained the vertical decay rate . Ultimately, we combined ground floor and decay models to explain the measured concentrations at all heights. Results We found a clear decrease in mean nitrogen dioxide concentrations between measurements at ground level and those at higher floors for both seasons. The median concentration decrease was 8.1% at 10 m above street level in winter and 10.4% in summer. The decrease with height was sharper at buildings where high concentrations were measured on the ground and in canyon-like street configurations. While the conventional ground floor model was able to explain ground floor concentrations with a model R 2 of 0.84 (RMSE 4.1 μg/m 3 ), it predicted measured concentrations at all heights with an R 2 of 0.79 (RMSE 4.5 μg/m 3 ), systematically overpredicting concentrations at higher floors. The LUR model considering vertical decay was able to predict ground floor and higher floor concentrations with a model R 2 of 0.84 (RMSE 3.8 μg/m 3 ) and without systematic bias. Discussion Height above the ground is a relevant determinant of outdoor residential exposure, even in medium-sized European cities without much high-rise. It is likely that conventional LUR models overestimate exposure for residences at higher floors near major roads. This overestimation can be minimized by considering decay with height
    corecore