
1 

Modelling the vertical gradient of nitrogen dioxide in 1 

an urban area 2 

Marloes Eeftens1,2*, Danyal Odabasi1,2, Benjamin Flückiger1,2, Mark Davey1,2, Alex Ineichen1,2, Christian 3 

Feigenwinter2, Ming-Yi Tsai1,2,3 4 

Affiliations: 5 

1. Swiss Tropical and Public Health Institute, Basel, Switzerland 6 

2. University of Basel, Basel, Switzerland 7 

3. Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, 8 

USA 9 

Corresponding author: 10 

Marloes Eeftens 11 

E-mail: marloes.eeftens@swisstph.ch 12 

Department of Epidemiology and Public Health 13 

Swiss Tropical and Public Health Institute 14 

Socinstrasse 57, P.O. Box 4002 Basel, Switzerland 15 

Telephone: +41 61 284 87 25 16 

Fax:   +41 61 284 81 05 17 

Keywords:  18 

Air pollution, Vertical gradient, Land Use Regression, NO2, decay 19 

Sources of financial support: 20 

This work was supported by the Forschungsfonds University of Basel. 21 

Competing interest:  22 

The authors declare they have no competing financial interest. 23 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/211685572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

Abbreviations: 24 

LUR: Land use regression 25 

LOOCV: Leave-one-out cross-validation 26 

NO2: Nitrogen dioxide  27 

RMSE: Root mean squared error 28 

SVF: Sky view factor 29 

Acknowledgments:  30 

We thank all the study participants who provided a place to perform our measurements.  31 



3 

Abstract 32 

Introduction 33 

Land use regression models environmental predictors to estimate ground-floor air pollution 34 

concentration surfaces of a study area. While many cities are expanding vertically, such models 35 

typically ignore the vertical dimension.  36 

Methods 37 

We took integrated measurements of NO2 at up to three different floors on the facades of 25 38 

buildings in the mid-sized European city of Basel, Switzerland. We quantified the decrease in NO2 39 

concentration with increasing height at each facade over two 14-day periods in different seasons. 40 

Using predictors of traffic load, population density and street configuration, we built conventional 41 

land use regression (LUR) models which predicted ground floor concentrations. We further evaluated 42 

which predictors best explained the vertical decay rate. Ultimately, we combined ground floor and 43 

decay models to explain the measured concentrations at all heights.  44 

Results 45 

We found a clear decrease in mean nitrogen dioxide concentrations between measurements at 46 

ground level and those at higher floors for both seasons. The median concentration decrease was 47 

8.1% at 10m above street level in winter and 10.4% in summer. The decrease with height was 48 

sharper at buildings where high concentrations were measured on the ground and in canyon-like 49 

street configurations. While the conventional ground floor model was able to explain ground floor 50 

concentrations with a model R2 of 0.84 (RMSE 4.1 µg/m³), it predicted measured concentrations at all 51 

heights with an R2 of 0.79 (RMSE 4.5 µg/m³), systematically overpredicting concentrations at higher 52 

floors. The LUR model considering vertical decay was able to predict ground floor and higher floor 53 

concentrations with a model R2 of 0.84 (RMSE 3.8 µg/m³) and without systematic bias.  54 

Discussion 55 
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Height above the ground is a relevant determinant of outdoor residential exposure, even in medium-56 

sized European cities without much high-rise. It is likely that conventional LUR models overestimate 57 

exposure for residences at higher floors near major roads. This overestimation can be minimized by 58 

considering decay with height.  59 
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Introduction 60 

In epidemiological studies done in large populations, exposure to air pollution is typically modelled. 61 

Land use regression (LUR) takes actual measurement data obtained from a limited number of 62 

monitors distributed throughout the study area and environmental information such as land use, 63 

proximity to roads, traffic intensity population density and other predictors, typically obtained from 64 

geographical information systems, aiming to predict detailed spatial contrasts (de Hoogh et al., 2016; 65 

de Hoogh et al., 2017; Eeftens et al., 2016; Hoek et al., 2008). Typical air pollution LUR models take 66 

into account horizontal proximity to a source, but study participants living in the same building but 67 

on different floors are attributed the same exposure estimate, which may not be accurate. It is 68 

possible that floor of residence is related to health, as suggested by a recent study which found that 69 

higher floors have lower mortality rates in Switzerland(Panczak et al., 2013). 70 

Numerous studies have measured vertical gradients for individual streets as was recently reviewed 71 

by Sajani et al., (2018). Typically, studies found that in urban areas, levels of many pollutants 72 

decrease with increasing height, among them NO2 (Lufthygieneamt beider Basel, 1993; Meng et al., 73 

2008; Tsai and Chen, 2004; Zauli-Sajani et al., 2018), a marker for fossil fuel combustion by motorized 74 

traffic. The majority of these studies have focused on Asian cities which differ in pollutant sources, 75 

population density, and street setting (e.g., many high-rise buildings) and are therefore not directly 76 

comparable to moderate sized cities in Europe. Moreover, these studies typically measured the 77 

vertical gradient at a single or only at several buildings, allowing for the calculation of only one or 78 

several decay rates. To date, we only know of three other LUR studies which included height above 79 

the ground (floor level) as a model predictor, all are from Asia.(Barratt et al., 2018; Ho et al., 2015; 80 

Wu et al., 2014) In two Taiwanese studies, including floor level added substantially to the predictive 81 

power of a LUR model for PM2.5 (mass of particulate matter with a diameter <2.5 micrometer), and 82 

several of its elemental constituents.(Ho et al., 2015; Wu et al., 2014) Another study from Hong Kong 83 

calculated vertical decay rates for black carbon and PM2.5, but due to a limited number of paired 84 

vertical sites, it was not possible to let the decay rate vary depending on local conditions.(Barratt et 85 
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al., 2018) Instead, decay rates were assumed to be the same across the entire region in the LUR 86 

model in the model application for epidemiological exposure estimation.(Barratt et al., 2018) This 87 

study aims to characterize vertical gradients in concentrations of NO2 at many locations and 88 

investigate how these gradients may be related to geographical predictors and street configuration. 89 

We present and evaluate a three dimensional LUR model for NO2 in which vertical decay is fully 90 

integrated. 91 

Methods 92 

Study design 93 

We selected 25 buildings, adjacent to a diverse variety of streets in the canton of Basel Stadt, 94 

Switzerland, which had a population of 198’000 in 2016.(Statistisches Amt Basel Stadt, 2017) We 95 

aimed to represent the full range of traffic densities and street configurations, and over-represent 96 

busy and canyon-like streets, where we expected higher concentrations (Figure 1). Measurements 97 

took place simultaneously at all sites over a period of two weeks in the winter (25 February to 11 98 

March 2016) and were repeated in summer (13 June to 29 June 2016). Samplers were installed and 99 

collected over two consecutive days each round. On each building, we installed three integrated NO2 100 

passive samplers from the company PASSAM AG(Passam - Laboratory for environmental analysis and 101 

air pollution) in a vertical line by attaching the sampler tubes in shelters on the external wall or 102 

windows facing the street. Buildings differed in their facade structure, so having consistently the 103 

same spacing between ground floor and the higher samplers was not feasible. Instead, the lowest of 104 

the three measurements was always at the ground floor, between 1.8 and 2.9 meter above ground 105 

and the other two samplers were placed at floors 1 to 6, up to 20 meters above street level, 106 

attempting to maximize the vertical spread, but constrained by the residents’ willingness to 107 

participate. The exact installation height of each sampler was determined using a Bosch PLR 50 Laser 108 

Measure. The height of the building to which the samplers were attached, the height of the building 109 

on the opposite side of the street and the street width were measured to calculate the canyon aspect 110 
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ratio: the average building height on both sides of the street (h1 and h2) divided by the street width 111 

(w): (h1+h2)/(2*w). During both summer and winter, off-peak (09:00-16:00) traffic density at each 112 

site was counted for 30 Minutes. To assess the quality of the measurements, we took a total of 8 113 

field blanks and 12 duplicates during the winter and summer seasons. 114 

Geographical predictor data 115 

A list of 66 spatial predictors were derived in different buffers, following previous land use regression 116 

studies in small geographic areas.(Cyrys et al., 2012; Eeftens et al., 2013; Eeftens et al., 2012; Eeftens 117 

et al., 2016) The following geographic information was available: 118 

- Information on population density was available from the 100x100m grid the Federal 119 

Statistical Office published in 2011. The number of inhabitants was derived in six different 120 

buffers of 100, 250, 500, 750, 1000 and 5000m. 121 

- Information on land cover was obtained from the Corine Land Cover 2006 Raster 122 

data.(European Environment Agency (EEA)) The original 44 classes were summarized into 7 123 

groups: airport, industry, natural, port, residential, water and urban green spaces, following 124 

earlier publications.(Beelen et al., 2009; Beelen et al., 2013; Eeftens et al., 2012) We derived 125 

the total area of each land use (in m2) in six different buffers of 100, 250, 500, 750, 1000 and 126 

5000m. 127 

- A digital national road network (Vector 25) was available from SwissTopo. The SonBase Noise 128 

Database, available from the Federal Office for the Environment, provided modelled traffic 129 

intensity.(Swiss Bundesamt für Umwelt (BAFU), 2009) The length of each road segment in a 130 

buffer was multiplied by the traffic intensity on that segment, after which all segments were 131 

summed to obtain the traffic load for that buffer. Correlation between traffic load and locally 132 

conducted traffic counts validated this measure (Online Supplement 1). Road length (in m) 133 

and traffic load (in vehicles day-1*m) were calculated in eight different buffers of 25, 50, 75, 134 

100, 250, 500, 750, 1000m. 135 
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- The Institute of Meteorology, Climatology and Remote Sensing at the University of Basel 136 

provided a detailed 1x1m map of the sky view factor (SVF)(Lindberg and Grimmond, 2010), a 137 

unit-less measure for the canyon-like structure of urban streets, which was previously shown 138 

to improve air pollution models (Eeftens et al., 2013). The higher the sky view factor, the 139 

more of the sky is visible, and thus the higher the air exchange rate between the canyon and 140 

the air above. Correlations between aspect ratio (measured at each site) and SVF validated 141 

this measure (Online Supplement 1). 142 

- Altitude information (in m above sea level) was available from the DHM25 of SwissTopo and 143 

was extracted for each point.(Bundesamt für Landestopographie, 2001)  144 

Altitude, natural and urban green land use and sky view factor were assumed to have a negative 145 

effect on NO2 concentration with increasing value and no a priori assumptions were made about the 146 

effect of water. All other predictors were assumed to have a positive effect on NO2 concentration. No 147 

a priori assumptions were made on how these predictors affected the vertical decay. 148 

Land use regression modelling 149 

Following an earlier publication(Eeftens et al., 2016), the calculated predictors were screened prior 150 

to their evaluation in the LUR model. Predictors were discarded if fewer than five sites had a value 151 

different from the most frequently occurring value, if the maximum value was higher than 152 

P90+3*(P90-P10) or the minimum value was lower than P10-3*(P90-P10). All these criteria indicate 153 

an abnormal distribution and a model including such variables would likely yield unstable 154 

coefficients. We followed the same stepwise variable selection procedures as were used by several 155 

earlier studies.(Eeftens et al., 2012; Eeftens et al., 2016) Criteria for the inclusion of additional 156 

variables were: 1) an improvement in adjusted r-squared by at least 0.01; 2) ensuring the a priori 157 

defined direction of effect for all variables; 3) a p value smaller than 0.05; 4) a maximum Cook’s D 158 

value of 1 for all sites; 5) a maximum Variance Inflation Factor (VIF) of 3 to minimize collinearity; 6) 159 

no change in the direction of previously included variables.  160 
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Firstly, NO2 concentration at the ground floor was modelled for both summer and winter separately. 161 

We then combined both seasonal ground floor models into a mixed model by including an indicator 162 

for season and a random effect for site.  163 

Vardoulakis et al. (2003) suggested that vertical profiles typically decrease exponentially with height. 164 

The concentration at any height can thus be determined by the ground concentration, the height and 165 

a decay constant k following Equation 1. Since we had multiple measurements per building, we fit an 166 

exponential model to determine k for each measurement site and for the winter and summer 167 

seasons. Deriving a second set of models, we then selected the predictors which best determined k 168 

using the same variable selection method described above, adding a random effect for site. Seasonal 169 

models were combined into a model for both seasons, originally retaining all of the selected spatial 170 

predictors and the random intercept for site and adding an indicator for season. Any redundant 171 

spatial variables were excluded if the increased in AIC was less than 2, indicating that they did not 172 

substantially improve the combined model. 173 

Equation 1: 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛ℎ𝑒𝑖𝑔ℎ𝑡 = 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑔𝑟𝑜𝑢𝑛𝑑 × 𝑒𝑘×ℎ𝑒𝑖𝑔ℎ𝑡.  174 

As a third step, the ground floor model and the model for k were combined by plugging the models 175 

for ground floor concentration and k into Equation 1, thereby extending the LUR to allow for the 176 

calculation of concentrations at any height and location in the city.  177 

Model diagnostics 178 

We derived model R2 and RMSE, as well as cross-validation R2 and RMSE for all models. We further 179 

validated all models by iteratively leaving each of the 25 buildings out entirely and predicting it using 180 

the remaining 24 buildings. For models M1 and M2, where we had a single observation per building, 181 

this was done using leave-one-out cross-validation (LOOCV), iteratively leaving out each one of 25 182 

sites and predicting its concentration based on the coefficients obtained from a model fit on the 183 

remaining 24 sites (Table 1). For the mixed models (M3-M9), this cross-validation was done by 184 

simultaneously leaving out all observations from that building from both seasons and using only the 185 
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fixed effects obtained from the remaining sites to predict up to six concentrations for that building 186 

(two seasons * up to three different heights).  187 

For the four models which were built using stepwise selection (M1, M2, M4 and M5), we assessed 188 

the chance that similarly high model R2 values could be obtained solely by chance, as suggested by 189 

Basagaña et al., 2012.(Basagaña et al., 2012) Using the dependent variables from the study (NO2 or 190 

k), we simulated the model building process 10,000 times using unique sets of randomly generated 191 

“predictor” variables, from a normal distribution with mean = 0 and standard deviation of 1. For each 192 

model, we then simulated the chance of finding a model based on random variables with an equally 193 

high or higher R2 than the model we selected.  194 

Used software 195 

All geographical predictor variables were derived in ArcGIS10. All statistical analyses were done in R 196 

version 3.3.2, using packages lme4 for the mixed models and ggplot for plotting.(R Core Team)  197 

Results 198 

Measurements 199 

We found that NO2 concentrations were substantially higher in the winter season with a ground-floor 200 

median of 35.1 µg/m³ (InterQuartile Range (IQR): 32.5-43.9) than in the summer season (median 201 

23.2 µg/m³, IQR: 20.2-34.8) (Figure 2). All field blanks indicated concentrations under or at the 202 

detection limit (≤0.4 µg/m³) indicating negligible contamination. Primary and duplicate samples were 203 

highly correlated (R ²: 0.94) and showed a low mean absolute difference of 1.6 µg/m³, indicating high 204 

reproducibility (Online Supplement 2). NO2 concentrations generally decreased with increasing 205 

height above the ground in both winter and summer. The decay constant k was calculated at a 206 

median of -0.0084 m-1 in winter (IQR: -0.011 m-1 to -0.00068 m-1) and at a median of -0.011 m-1 (IQR: -207 

0.017 m-1 to -0.0015 m-1) in summer. This translates to a median concentration reduction of 8.1% at 208 

10m above street level (IQR: 0.7% to 10.2%) in winter and 10.4% (IQR: 1.5% to 15.2%) in summer 209 
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(see Online Supplement 3).The decrease with height was sharper at buildings where higher NO2 210 

concentrations were measured at ground level: for an IQR increase in ground level NO2, k decreased 211 

by 0.011 m-1 in winter and by 0.0078 m-1 in summer. The spatial contrast in NO2 was highest at the 212 

ground floor, and decreased with increasing height (Figure 2). The average temperature in winter 213 

was 4.0 °C with a relative humidity of 77%, in summer this was 17.8 °C and 75% relative humidity.  214 

LUR models 215 

Out of the 67 predictors derived for the study, 27 were dropped in the variable screening process, 216 

leaving 40 eligible for evaluation. The screening process mostly flagged variables with a limited 217 

number of <5 points with a different value than the most common; e.g. few sites were within 100, 218 

250 or 500m of an airport, port or industrial area and thus these variables were mostly 0. The on-site 219 

measurements of the aspect ratio and the SVF derived from GIS were highly correlated, as were the 220 

manual traffic counts and the GIS derived traffic load in 25m (R2 = 0.60 and R2 = 0.81 respectively, 221 

Online Supplement 1).   222 

The ground floor models identified for the winter (M1) and summer (M2) included the same two 223 

predictor variables (traffic load in a 25m buffer and residential land use in a 5000m buffer) with very 224 

similar coefficients, and yielded similar R2’s of 0.71 and 0.79, respectively (Table 1). The combined 225 

mixed model for both seasons (M3, with random effects for site) showed a large increase of 11.9 226 

µg/m³ for season and again yielded similar coefficients to the season-specific models and a slightly 227 

higher R2 of 0.84. No interactions between season and GIS variables were significant. Ground floor 228 

models performed reasonably well in leave-one-out (M1 and M2) cross validation, yielding a 10-11% 229 

lower predictive power and slightly higher similar RMSE’s of 4.9 µg/m³ and 4.6 µg/m³. Leave-one-230 

group-out (M3) cross validation on the mixed model (M3), yielded a similar RMSE of 4.5 µg/m³ and 231 

only slightly lower predictive power, due to the relatively large but easy to predict difference in 232 

season. 233 



12 

The decay constant did not differ notably between the seasons: a median decay of -0.0084m-1 was 234 

calculated for winter and -0.011m-1 for summer (Figure 3). Typically, k was lower for sites surrounded 235 

by high traffic load and in streets with a low SVF. The winter model for the decay constant k (M4) 236 

explained a substantial part of the variability in k (R2 of 0.69), and included variables related to traffic 237 

load (25m) and road length (100m) in the close vicinity, residential land use (250m), as well as sky 238 

view factor (Table 1). The summer model (M5) did not perform as well (R2 of 0.37), but included the 239 

same traffic load (25m) predictor and sky view factor, which were selected for both models with very 240 

similar coefficients, indicating that the busier and the more canyon-like the street, the lower k was. 241 

When the season-specific models were combined (M6), season was evaluated as an additional 242 

predictor but was not included because it was not significant. Similarly, residential land use and road 243 

length were no longer significant in the model for both seasons, and were dropped. The combined-244 

season model (M6) for k had a lower R2, but performed similarly well in leave-one-group-out cross-245 

validation.  246 

For the models M7, M8 and M9, R2 was very similar to the ground level models (R2’s of 0.67, 0.78, 247 

0.84, respectively). Leave-one-group-out cross-validation predictions were able to estimate the 248 

variability in measured concentrations well (Table 1).  249 

For the four models which were built using stepwise selection (M1, M2, M4 and M5), we repeatedly 250 

simulated the chance of obtaining a model with at least the same R2 by evaluating 40 randomly 251 

generated predictor variables. For the ground floor models M1 and M2, only 2.3% and 0.1% of 252 

simulated models had R2 values equal to or higher than 0.71 and 0.79 respectively, none of which 253 

included as few as two predictors. This indicated that the chance of obtaining similarly good ground 254 

floor models by chance was very small. The winter model for k (M4) had an R2 of 0.69, and a similarly 255 

low chance of 2.6% (1.2% with 4 variables or fewer) of obtaining this result by chance. However, a 256 

model similar to the summer model for k (M5), which included 2 predictors and yielded an R2 of 0.37, 257 

was obtained by chance in 26% of simulations (12% with 2 predictors or fewer). This indicated that it 258 

was more likely that the M5 model was due to chance. 259 
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LUR predictions 260 

Figure 4 shows the correlation between the measured NO2 concentrations and the predictions as 261 

obtained from the models M3 (Figure 3A) and M9 (Figure 3B). Model predictions by the 262 

“conventional” ground floor LUR model (M3) differ by building but are otherwise the same, 263 

regardless of the height. In contrast, the predictions by model M9 show a clear effect of height within 264 

each building, and that the decay with height is site-dependent. Predictions from the model M9, 265 

which considers the height, agree better with the measured data, showing a correlation of 0.84 with 266 

the measured data (versus 0.79 for M3) and a lower RMSE of 3.78 µg/m³ (versus 4.25 µg/m³ for M3). 267 

Applying the winter and summer ground floor models (M1 and M2) to predict all 72 and 69 sites 268 

measured in the respective seasons, regardless of their height, yielded R2’s of 0.62 (RMSE 4.13 269 

µg/m³) for winter and 0.71 (RMSE 4.09 µg/m³) for summer. Both of the seasonal models considering 270 

height (M6 and M7) also explained more variability with R2’s of 0.67 (RMSE 3.86 µg/m³) for winter 271 

and 0.78 (3.63 µg/m³) for summer. 272 

Figure 5 shows the prediction errors by both models M3 and M9 as a function of floor of residence. 273 

At the ground floor level, both models perform similarly well, but the ground floor model M3 is less 274 

able to accurately predict concentrations at higher floors, showing a significant overestimation for 275 

floors for the 3rd, 4th and higher floors. The model M9 which includes height as a predictor is able to 276 

derive unbiased concentration estimates for both the ground floor and all higher floors. 277 

Discussion 278 

We found a clear decrease in NO2 concentration with increasing height in both winter and summer, 279 

which was more pronounced in streets with high ground-floor concentrations. We showed that 280 

conventional “ground floor” LUR models can be extended to include height, by introducing a decay 281 

constant, k, which—like the ground floor concentration—depends on locally important 282 

environmental characteristics, such as the street configuration (e.g., SVF) and the local traffic load. 283 

We showed that a ground floor LUR model for NO2 developed in the conventional way over-284 
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predicted concentrations at higher floors, whereas our LUR model considering concentration decay 285 

with height was able to predict ground floor and higher floor concentrations with similar accuracy.  286 

Determinants of vertical decay 287 

The study confirms earlier suggestions from a review by Hoek et al (2008) that LUR models give 288 

biased estimates at higher floors for buildings near major roads, where concentration decrease 289 

sharply with height, and that vertical gradients at urban background locations are limited.(Hoek et 290 

al., 2008) In addition, this study suggests that the lower SVF (the more canyon-like the street), the 291 

sharper the decay with height. This is likely due to a lower air exchange rate between the air inside 292 

the canyon and the air above the building canopy, leading to substantial pollutant build-up at lower 293 

levels.(Vardoulakis et al., 2003) The median decay constants of -0.0084m-1 (winter) and -0.011m-1 294 

(summer) were similar to the -0.012m-1 applied for NO2 in Barrat et al. (2018), and those reported by 295 

Zauli-Sajani et al. (2018), estimated to be -0.022m-1 in winter and -0.007m-1 in summer1. While all 296 

three previous LUR studies which considered height hypothesized that the decay rate may depend on 297 

street configuration, they were unable to derive any patterns.(Barratt et al., 2018; Ho et al., 2015; 298 

Wu et al., 2014) In 1993, a study by the Lufthygieneamt beider Basel (Air hygiene office of Basel) also 299 

reported a decay with height in a canyon-like street.(Lufthygieneamt beider Basel, 1993) An inverted 300 

vertical gradient was observed for the heating season in that study, because of the chimneys 301 

emitting NO2 at rooftop level.(Lufthygieneamt beider Basel, 1993) We indeed found that k was 302 

slightly higher (closer to 0 m-1) in winter across the whole city, but this was not statistically 303 

significant. Although this may suggests that vertical decay is indeed slightly reduced in the 304 

wintertime because of additional NO2 emissions at rooftop level, we did not see a flattening or 305 

inversion of the vertical gradient in the winter time as reported in the study from 1993. This could be 306 

due to more homes switching to district heating and/or cleaner alternative fuels since 1993 making 307 

ground floor emissions from traffic relatively important determinants of vertical decay.  308 

                                                           
1 These numbers were not directly reported by Zauli-Sajani et al. (2018), but derived using Equation 1 from the 

heights (ground ~1.5m, 15m, 26m, 44m, 65m), the winter NO2 concentrations (70.5 µg/m³, 63.6 µg/m³, 62.9 
µg/m³, 38.7 µg/m³, 18.1 µg/m³) and the NO2 summer concentrations (41.2 µg/m³, 34.4 µg/m³, 32.1 µg/m³, 30.0 
µg/m³, 25.3 µg/m³). 
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Implications for exposure science 309 

Vertical gradients and street configuration are typically thought to be relevant mostly to high-density 310 

high-rise cities.(Barratt et al., 2018; Ho et al., 2015; Wu et al., 2014) Our measurements show that 311 

the concentration drop in NO2 is also relevant for medium-sized European cities, and that considering 312 

decay with height can also improve LUR models commonly applied to assess residential air pollution 313 

exposure in epidemiological studies. Similar vertical gradients may exist in other cities, but this 314 

depends on whether (as in Basel) most local air pollutants are emitted by traffic at street level, rather 315 

than e.g. by industry or home heating installations, which typically emit at rooftop level. In addition, 316 

vertical gradients may depend on weather patterns and local topography. This is one of the first 317 

studies looking at vertical gradients; therefore, we advise caution in translating these findings into 318 

local policies, or assuming impacts on indoor and personal air pollution exposure.  319 

Strengths and limitations 320 

In this study, we only measured NO2, which is a good marker for traffic-related air pollutants. It is 321 

likely that other air pollutants which decay more slowly with increasing horizontal distance, such as 322 

particulate matter smaller than 2.5 or 10 µm (PM2.5 or PM10), may also exhibit a less pronounced 323 

vertical gradient (Karner et al., 2010). In contrast, pollutants which decrease more rapidly than NO2 in 324 

the horizontal plane, such as CO, NO and ultrafine particles, may do so in the vertical dimension as 325 

well due to their chemical transformation and coagulation properties.(Karner et al., 2010)  326 

As we used two-week time-integrated measurements of NO2 in two different seasons, we were 327 

unable to test how the ground floor concentrations and vertical gradients may depend on individual 328 

meteorological factors such as precipitation, relative humidity, sunshine hours, temperature, wind 329 

speed and wind direction. The two seasons captured substantial differences in many of these 330 

weather parameters (see Online Supplement 4). The ground floor concentrations clearly differed 331 

substantially between the winter and summer seasons, and hence season is an important predictor 332 

for ground floor concentration. However, the median and IQR of k only differed slightly by season, 333 
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and season was not ultimately a significant determinant. This indicates that in our study, k was likely 334 

not substantially influenced by weather.   335 

Another limitation of the study is its limited sample size (25 buildings) in the horizontal plane, which 336 

was due to the limited scope and budget available for the study. Several earlier papers have raised 337 

concern about overfitting in LUR models based on small datasets.(Basagaña et al., 2012; Wang et al., 338 

2012) We took care to restrict the number of variables using a screening and a priori set standards 339 

for the acceptance of variables into the model (see methods), reducing the chance that unrelated 340 

variables would be included merely by chance. In addition, we quantified the chance of obtaining 341 

models with similar explanatory power using 40 randomly generated predictors, showing that for the 342 

ground level models, this chance was very low. For the models for k, there was a higher chance, but 343 

considering that both seasonal models for k independently selected SVF and a small (25m) buffer 344 

traffic load estimate supports that these predictors are likely actually predictive of k.  345 

Furthermore, it was challenging to recruit multiple apartments in a single building to take part in the 346 

study, and especially to find buildings on major roads with relatively high ground floor 347 

concentrations. Due to the limited number of three different heights per building, we only 348 

considered an exponential decay shape for the vertical gradient and did not consider shapes with a 349 

higher number of parameters. 350 

Conclusion 351 

Height above the ground is a relevant determinant of outdoor residential exposure to traffic related 352 

air pollutant NO2. The decrease with height is clearer in places with a high ground floor 353 

concentration. This study is one of the first studies to develop a land use regression model which 354 

incorporates height above the ground as a predictor variable. This model outperformed a 355 

conventional ground-floor LUR model fitted using only measurements at street level in predicting 356 

concentrations at higher floors. The conventional LUR model overestimated exposure at higher 357 
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floors, particularly for residences where relatively high NO2 concentrations were measured at ground 358 

level near major roads. This overestimation may be minimized by considering decay with height. 359 
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Table 1 433 

Table 1: Model results for ground-floor models, the decay constant k and the final LUR including 434 

height, for winter and summer seasons separately and combined. 435 

Dependent 
variable 

Model Season N Structure 
a
 R

2
 

RMSE 
R

2
 LO(G)OCV 

RMSE 
c 

Ground floor  
NO2 

M1 Winter 25 NO2, winter = 37.5+ 
6.32*traffic load (25m)+ 
3.47*residential land use (5000m) 

0.71  
4.2  

0.59 
4.9 

M2 Summer 25 NO2, summer = 25.5+ 
7.17*traffic load (25m)+ 
3.36*residential land use (5000m) 

0.79 
3.7 

0.68 
4.6 

M3 Both seasons
 b

 50 NO2, both seasons = 25.8+ 
11.9*winter +  
7.09*traffic load (25m)+ 
3.34*residential land use (5000m) 

0.84 
4.1 

0.79 
4.5 

k (the decay 
constant) 

M4 Winter 25 kwinter = -0.00956+ 
-0.00988 * traffic load (25m) +  
-0.00512 * residential land use (250m) +  
0.00448 * SVF 

d
 +  

-0.00345 * road length (100m)  

0.69 
0.0055 

0.61 
0.0066 
 

M5 Summer 25 ksummer = -0.0125 + 
0.00811 * SVF 

d
 + 

-0.00632 * traffic load (25m) 

0.37 
0.011 

0.23 
0.012 

M6 Both seasons
 b

 50 kboth seasons = -0.0112 + 
-0.00750 * traffic load (25m) + 
0.00632 * SVF 

d
 

0.43 
0.0067 

0.33 
0.010 

Models  
including  
height 

M7 Winter 
b
 72 NO2 = ground floor concentrationwinter * 

exp(kwinter*height)  
0.67 
3.9 

0.55 
4.5 

M8 Summer
 b

 69 NO2 = ground floor concentrationsummer * 
exp(ksummer*height)  

0.78 
3.6 

0.68 
4.4 

M9 Both seasons
 b

 141 NO2 = ground floor concentrationboth seasons * 
exp(kboth seasons*height)  

0.84 
3.8 

0.79 
4.0 

a Effects are shown for standardized variables, so the relative effect sizes of the predictors can be 436 

compared. 437 

b Mixed effects model with random intercept for site, reported model diagnostics are shown for fixed 438 

effects only. 439 

c LO(G)OCV = Leave One (Group) Out Cross Validation: all observations from one building (all heights, 440 

all seasons) were left out simultaneously, which meant a single one for M1, M2, M4 and M5, two for 441 

M3 and M6, up to three for M7 and M8, and up to six for M9. Concentrations were estimated using 442 

only observations from other buildings. 443 

d Sky view factor, see the method section; geographical predictor data.  444 
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Figure 1: Map of measurement sites: black dots represent the 25 sampling sites in the canton of 445 

Basel Stadt, Switzerland. 446 

 447 

  448 



21 

Figure 2: NO2 concentration by season: each line connects the concentrations measured at the 449 

different floors of the same building. The ribbons represent the general decreasing trend with 450 

increasing height above the ground, estimated by locally weighted regression (LOESS). 451 

452 
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Figure 3: The decay constant k as calculated for all sites in the summer and winter period. Each point 

represents k as calculated for one of 25 sites measured in each season. The larger the point, the 

higher the traffic intensity around it: sites surrounded by more traffic generally have a lower k (i.e. a 

stronger decay). The darker the point, the more canyon-like the street, and thus the lower the SVF: 

sites in canyon-like streets generally have a lower k (i.e. a stronger decay). The diamond represents 

the mean, boxes the 25th, 50th and 75th percentiles, and whiskers extend to the smallest observation 

≥ the 25th percentile - 1.5 * IQR (Interquartile Range) and the largest observation ≤ the 75 th 

percentile + 1.5 * IQR. The Grey lines connect the same sites in different seasons.  
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Figure 4: Model predictions for all 141 measurements by the ground floor model M3 (left) and by 

the model including height M9 (right). Connected points depict observations done in the same 

season at the same building. The ground floor model estimates the same concentration for the 

entire building facade, regardless of height, whereas the model including height shows a more 

realistic decay and predicts the observed decrease in NO2 with height more accurately. 
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Figure 5: Model prediction error by floor for the model which did not include height and the model 

which considers decay with height. Note that the bias of the light grey model is increasingly positive 

for higher floors, indicating overestimation of the NO2 concentration. The box shows the 25th, 50th 

and 75th percentiles, whiskers extend to the smallest observation ≥ the 25th percentile - 1.5 * IQR 

(Interquartile Range) and the largest observation ≤ the 75th percentile + 1.5 * IQR. 

 

 

 


