28 research outputs found

    Perpustakaan UMP anjur NCOAL

    Get PDF
    Kuantan 17 Mac - Seramai 70 peserta dari Perpustakaan awam dan swasta yang menyertai Persidangan Kebangsaan Perpustakaan Akademik (NCOAL) 2015 selama dua hari bertempat di Hotel MS Garden, Kuantan

    In-vivo expressed Mycobacterium tuberculosis antigens recognised in three mouse strains after infection and BCG vaccination

    Get PDF
    Novel tuberculosis (TB)-vaccines preferably should (i) boost host immune responses induced by previous BCG vaccination and (ii) be directed against Mycobacterium tuberculosis (Mtb) proteins expressed throughout the Mtb infection-cycle. Human Mtb antigen-discovery screens identified antigens encoded by Mtb-genes highly expressed during in vivo murine infection (IVE-TB antigens). To translate these findings towards animal models, we determined which IVE-TB-antigens are recognised by T-cells following Mtb challenge or BCG vaccination in three different mouse strains. Eleven Mtb-antigens were recognised across TB-resistant and susceptible mice. Confirming previous human data, several Mtb-antigens induced cytokines other than IFN-gamma. Pulmonary cells from susceptible C3HeB/FeJ mice produced less TNF-alpha, agreeing with the TB-susceptibility phenotype. In addition, responses to several antigens were induced by BCG in C3HeB/FeJ mice, offering potential for boosting. Thus, recognition of promising Mtb-antigens identified in humans validates across multiple mouse TB-infection models with widely differing TB-susceptibilities. This offers translational tools to evaluate IVE-TB-antigens as diagnostic and vaccine antigens.Immunogenetics and cellular immunology of bacterial infectious disease

    The course of cytokine and chemokine gene expression in clinically suspect arthralgia patients during progression to inflammatory arthritis

    Get PDF
    Objectives: Autoantibody responses increase years before the onset of inflammatory arthritis (IA) and are stable during transitioning from clinically suspect arthralgia (CSA) to IA. Cytokine and chemokine levels also increase years before IA onset. However, the course in the at-risk stage of CSA during progression to disease or non-progression is unknown. To increase the understanding of processes mediating disease development, we studied the course of cytokine, chemokine and related receptors gene expression in CSA patients during progression to IA and in CSA patients who ultimately did not develop IA. Methods: Whole-blood RNA expression of 37 inflammatory cytokines, chemokines and related receptors was determined by dual-colour reverse transcription multiplex ligation-dependent probe amplification in paired samples of CSA patients at CSA onset and either at IA development or after 24 months without IA development. ACPA-positive and ACPA-negative CSA patients developing IA were compared at CSA onset and during progression to IA. Generalised estimating equations tested changes over time. A false discovery rate approach was applied. Results: None of the cytokine/chemokine genes significantly changed in expression between CSA onset and IA development. In CSA patients without IA development, G-CSF expression decreased (P = 0.001), whereas CCR6 and TNIP1 expression increased (P Horizon 2020 (H2020)714312Pathophysiology and treatment of rheumatic disease

    BCG-induced immunity profiles in household contacts of leprosy patients differentiate between protection and disease

    Get PDF
    Leprosy is an infectious disease caused by Mycobacterium leprae leading to irreversible disabilities along with social exclusion. Leprosy is a spectral disease for which the clinical outcome after M. leprae infection is determined by host factors. The spectrum spans from anti-inflammatory T helper-2 (Th2) immunity concomitant with large numbers of bacteria as well as antibodies against M. leprae antigens in multibacil-lary (MB) leprosy, to paucibacillary (PB) leprosy characterised by strong pro-inflammatory, Th1 as well as Th17 immunity. Despite decades of availability of adequate antibiotic treatment, transmission of M. leprae is unabated. Since individuals with close and frequent contact with untreated leprosy patients are particularly at risk to develop the disease themselves, prophylactic strategies currently focus on household contacts of newly diagnosed patients. It has been shown that BCG (re)vaccination can reduce the risk of leprosy. However, BCG immunopro-phylaxis in contacts of leprosy patients has also been reported to induce PB leprosy, indicating that BCG (re)vaccination may tip the balance between protective immunity and overactivation immunity causing skin/nerve tissue damage. In order to identify who is at risk of developing PB leprosy after BCG vaccination, amongst individuals who are chronically exposed to M. leprae, we analyzed innate and adaptive immune markers in whole blood of household contacts of newly diagnosed leprosy patients in Bangladesh, some of which received BCG vaccination. As controls, individuals from the same area without known contact with leprosy patients were similarly assessed. Our data show the added effect of BCG vaccination on immune markers on top of the effect already induced by M. leprae exposure. Moreover, we identified BCG-induced markers that differentiate between protective and disease prone immunity in those contacts. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).Immunogenetics and cellular immunology of bacterial infectious disease

    Quantitative lateral flow strip assays as user-friendly tools to detect biomarker profiles for leprosy

    Get PDF
    Leprosy is a debilitating, infectious disease caused by Mycobacterium leprae. Despite the availability of multidrug therapy, transmission is unremitting. Thus, early identification of M. leprae infection is essential to reduce transmission. The immune response to M. leprae is determined by host genetics, resulting in paucibacillary (PB) and multibacillary (MB) leprosy associated with dominant cellular or humoral immunity, respectively. This spectral pathology of leprosy compels detection of immunity to M. leprae to be based on multiple, diverse biomarkers. In this study we have applied quantitative user friendly lateral flow assays (LFAs) for four immune markers (anti-PGL-I antibodies, IL-10, CCL4 and IP-10) for whole blood samples from a longitudinal BCG vaccination field-trial in Bangladesh. Different biomarker profiles, in contrast to single markers, distinguished M. leprae infected from non-infected test groups, patients from household contacts (HHC) and endemic controls (EC), or MB from PB patients. The test protocol presented in this study merging detection of innate, adaptive cellular as well as humoral immunity, thus provides a convenient tool to measure specific biomarker profiles for M. leprae infection and leprosy utilizing a field-friendly technology

    Application of new host biomarker profiles in quantitative point-of-care tests facilitates leprosy diagnosis in the field

    Get PDF
    Background: Transmission of Mycobacterium leprae, the pathogen causing leprosy, is still persistent. To facilitate timely (prophylactic) treatment and reduce transmission it is vital to both early diagnose leprosy, and identify infected individuals lacking clinical symptoms. However, leprosy-specific biomarkers are limited, particularly for paucibacillary disease. Therefore, our objective was to identify new biomarkers for leprosy and assess their applicability in point-of-care (POC) tests. Methods: Using multiplex-bead-arrays, 60 host-proteins were measured in a cross-sectional approach in 24-h whole blood assays (WBAs) collected in Bangladesh (79 patients; 54 contacts; 51 endemic controls (EC)). Next, 17 promising biomarkers were validated in WBAs of a separate cohort (55 patients; 27 EC). Finally, in a third cohort (36 patients; 20 EC), five candidate markers detectable in plasma were assessed for application in POC tests. Findings: This study identified three new biomarkers for leprosy (ApoA1, IL-1Ra, S100A12), and confirmed five previously described biomarkers (CCL4, CRP, IL-10, IP-10, αPGL-I IgM). Overnight stimulation in WBAs provided increased specificity for leprosy and was required for IL-10, IL-1Ra and CCL4. The remaining five biomarkers were directly detectable in plasma, hence suitable for rapid POC tests. Indeed, lateral flow assays (LFAs) utilizing this five-marker profile detected both multi- and paucibacillary leprosy patients with variable immune responses. Interpretation: Application of novel host-biomarker profiles to rapid, quantitative LFAs improves leprosy diagnosis and allows POC testing in low-resource settings. This platform can thus aid diagnosis and classification of leprosy and also provides a tool to detect M.leprae infection in large-scale contact screening in the field

    Gene expression identifies patients who develop inflammatory arthritis in a clinically suspect arthralgia cohort (vol 22, 266, 2020)

    No full text
    An amendment to this paper has been published and can be accessed via the original article.Molecular Epidemiolog

    Synthetic Long Peptide Derived from Mycobacterium tuberculosis Latency Antigen Rv1733c Protects against Tuberculosis

    No full text
    Immunogenetics and cellular immunology of bacterial infectious disease
    corecore