4 research outputs found

    Development of the natural working fluid‐based refrigeration system for domestic scale freeze‐dryer

    Get PDF
    In this work, the analysis of the refrigeration system designed for the FrostX 10 freeze‐dryer is presented. The main goal of this study was to experimentally investigate the reference R452a freeze‐dryer and prepare recommendations for a machine based on the R290 refrigeration unit. In order to guarantee the temperature requirements and efficient operation of that unit, the analysis of suitable natural refrigerants was performed. Consequently, propane (R290) was selected. In addition, a number of modifications were introduced for the prototype system. System analysis showed that the replacement of the refrigerant in the existing system improves the system energy efficiency by approximately 18%. During the experimental campaign of the basic refrigeration unit, an unstable operation of the evaporator was found. The concept of a new cooling system for a prototype device was presented. The configuration and type of heat exchanger to maximise the performance of the ice trap of the freeze‐dryer were proposed.Development of the natural working fluid‐based refrigeration system for domestic scale freeze‐dryeracceptedVersio

    Experimental study of a R290 variable geometry ejector

    No full text
    Ejectors are classified as fluid-dynamics controlled devices where the “component-scale” performances are imposed by the local-scale fluid dynamic phenomena. For this reason, ejector performances (measured by the pressure-entrainment ratio coordinate of the critical point) are determined by the connection of operation conditions, working fluid and geometrical parameters. Given such a connection, variable geometry ejector represents a promising solution to increase the flexibility of ejector-based systems. The present study aims to extend knowledge on variable geometry systems, evaluating the local and global performances of the R290 ejector equipped with a spindle. The prototype ejector was installed at the R290 vapour compression test rig adapted and modified for the required experimental campaign. The test campaign considered global parameter measurements, such as the pressure and the temperature at inlets and outlet ports together with the mass flow rates at both inlet nozzles, and the local pressure drop measurements inside the ejector. In addition, the experimental data were gathered for different spindle positions starting from fully open position the spindle position limited by the mass flow rate inside the test rig with the step of 1.0 mm

    Development of the natural working fluid‐based refrigeration system for domestic scale freeze‐dryer

    Get PDF
    In this work, the analysis of the refrigeration system designed for the FrostX 10 freeze‐dryer is presented. The main goal of this study was to experimentally investigate the reference R452a freeze‐dryer and prepare recommendations for a machine based on the R290 refrigeration unit. In order to guarantee the temperature requirements and efficient operation of that unit, the analysis of suitable natural refrigerants was performed. Consequently, propane (R290) was selected. In addition, a number of modifications were introduced for the prototype system. System analysis showed that the replacement of the refrigerant in the existing system improves the system energy efficiency by approximately 18%. During the experimental campaign of the basic refrigeration unit, an unstable operation of the evaporator was found. The concept of a new cooling system for a prototype device was presented. The configuration and type of heat exchanger to maximise the performance of the ice trap of the freeze‐dryer were proposed
    corecore