6,515 research outputs found

    Phased electromagnetic acoustic transducer array for Rayleigh wave surface defect detection

    Get PDF
    A phased electromagnetic acoustic transducer (EMAT) array system has been developed for detection and characterisation of surface breaking defects. An array of four linear coils which are individually controlled are used to generate a Rayleigh wave. The high current electronics combined with the coil designs enables the array to generate either narrowband or broadband signals, and controlling the phase delay between the channels makes it possible to change the ultrasound wavelength without requiring the physical separation of the coils to be changed. Experimental results show that the four-coil phased array is able to generate a wavelength range from 3.0 mm to 11.7 mm. Surface breaking defects were characterised using a transmit-receive set-up with a broadband EMAT detector being used to detect the Rayleigh wave. Machined surface slots with different depths were used for technique validation. The results show that the array is sensitive to surface defects and that a wide depth sensitivity range for defect sizing can be easily achieved by applying phasing to tune the wavelength of operation. A large increase in detection flexibility is immediately shown

    An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 1: Theory and application

    Get PDF
    A computer program, the Propeller Nacelle Aerodynamic Performance Prediction Analysis (PANPER), was developed for the prediction and analysis of the performance and airflow of propeller-nacelle configurations operating over a forward speed range inclusive of high speed flight typical of recent propfan designs. A propeller lifting line, wake program was combined with a compressible, viscous center body interaction program, originally developed for diffusers, to compute the propeller-nacelle flow field, blade loading distribution, propeller performance, and the nacelle forebody pressure and viscous drag distributions. The computer analysis is applicable to single and coaxial counterrotating propellers. The blade geometries can include spanwise variations in sweep, droop, taper, thickness, and airfoil section type. In the coaxial mode of operation the analysis can treat both equal and unequal blade number and rotational speeds on the propeller disks. The nacelle portion of the analysis can treat both free air and tunnel wall configurations including wall bleed. The analysis was applied to many different sets of flight conditions using selected aerodynamic modeling options. The influence of different propeller nacelle-tunnel wall configurations was studied. Comparisons with available test data for both single and coaxial propeller configurations are presented along with a discussion of the results

    An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual

    Get PDF
    A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups

    Field Observations of Northbound Truck Traffic at Pacific Highway

    Get PDF
    This report pertains to a field project designed to collect data suitable for development of a simulation model of commercial vehicle operations (CVO) in the northbound direction at the Pacific Highway border crossing in Blaine, Washington. The project complements a recently completed effort that generated similar data for trucks moving southbound at Pacific Highway

    Update on NASA's Laser Communications Relay Demonstration Project

    Get PDF
    This paper provides an update on NASA's Laser Communications Relay Demonstration Project (LCRD), a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). LCRD will provide a minimum of two years of high data rate optical communications services to demonstrate a concept of operations for future mission critical Earth relay satellites. LCRD is expected to launch in June 2019 and demonstrate how optical communications can meet NASA's growing need for higher data rates, or for the same data rate provided by a comparable RF system, how it enables lower power, lower mass communications systems on user spacecraft. In addition, LCRD's architecture will allow it to serve as a testbed in space for the development of additional symbol coding, link and network layer protocols, etc. LCRD's mission and architecture has slowly evolved since the project first started and this paper will provide an update of LCRD and planned capabilities and experiments

    Spacecraft Charging Sensitivity to Material Properties

    Get PDF
    Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats

    African trypanosomiasis in travelers returning to the United Kingdom.

    Get PDF
    Two returning safari tourists with African trypanosomiasis were admitted to the Hospital for Tropical Diseases, London, in a 3-day period, compared with six cases in the previous 14 years. We describe the clinical features, diagnosis, and problems encountered in accessing appropriate therapy, and discuss the potential for emergence of this disease in increasingly adventurous international travelers

    Radiative Transitions in Charmonium from Lattice QCD

    Full text link
    Radiative transitions between charmonium states offer an insight into the internal structure of heavy-quark bound states within QCD. We compute, for the first time within lattice QCD, the transition form-factors of various multipolarities between the lightest few charmonium states. In addition, we compute the experimentally unobservable, but physically interesting vector form-factors of the ηc,J/ψ\eta_c, J/\psi and χc0\chi_{c0}. To this end we apply an ambitious combination of lattice techniques, computing three-point functions with heavy domain wall fermions on an anisotropic lattice within the quenched approximation. With an anisotropy ξ=3\xi=3 at as∼0.1fma_s \sim 0.1 \mathrm{fm} we find a reasonable gross spectrum and a hyperfine splitting ∼90MeV\sim 90 \mathrm{MeV}, which compares favourably with other improved actions. In general, after extrapolation of lattice data at non-zero Q2Q^2 to the photopoint, our results agree within errors with all well measured experimental values. Furthermore, results are compared with the expectations of simple quark models where we find that many features are in agreement; beyond this we propose the possibility of constraining such models using our extracted values of physically unobservable quantities such as the J/ψJ/\psi quadrupole moment. We conclude that our methods are successful and propose to apply them to the problem of radiative transitions involving hybrid mesons, with the eventual goal of predicting hybrid meson photoproduction rates at the GlueX experiment.Comment: modified version as publishe
    • …
    corecore