727 research outputs found

    Nucleon Structure from Lattice QCD

    Full text link
    Recent advances in lattice field theory, in computer technology and in chiral perturbation theory have enabled lattice QCD to emerge as a powerful quantitative tool in understanding hadron structure. I describe recent progress in the computation of the nucleon form factors and moments of parton distribution functions, before proceeding to describe lattice studies of the Generalized Parton Distributions (GPDs). In particular, I show how lattice studies of GPDs contribute to building a three-dimensional picture of the proton. I conclude by describing the prospects for studying the structure of resonances from lattice QCD.Comment: 6 pages, invited plenary talk at NSTAR 2007, 5-8 September 2007, Bonn, German

    Testing factorization in B -> D(*)X decays

    Get PDF
    In QCD the amplitude for B0 -> D(*)+pi- factorizes in the large Nc limit or in the large energy limit Q >> Lambda_QCD where Q = {m_b, m_c, m_b-m_c}. Data also suggests factorization in exclusive processes B-> D* pi+ pi- pi- pi0 and B-> D* omega pi-, however by themselves neither large Nc nor large Q can account for this. Noting that the condition for large energy release in B0-> D+ pi- is enforced by the SV limit, m_b, m_c >> m_b-m_c >> Lambda, we propose that the combined large Nc and SV limits justify factorization in B -> D(*) X. This combined limit is tested with the inclusive decay spectrum measured by CLEO. We also give exact large Nc relations among isospin amplitudes for B -> D(*)X and B -> D(*) D-bar(*)X, which can be used to test factorization through exclusive or inclusive measurements. Predictions for the modes B-> D(*) pi pi, B-> D(*)K K-bar and B-> D(*) D-bar(*) K are discussed using available data.Comment: 15 pages, 3 included .eps figures, minor change

    Quantum Kinetic Theory III: Quantum kinetic master equation for strongly condensed trapped systems

    Full text link
    We extend quantum kinetic theory to deal with a strongly Bose-condensed atomic vapor in a trap. The method assumes that the majority of the vapor is not condensed, and acts as a bath of heat and atoms for the condensate. The condensate is described by the particle number conserving Bogoliubov method developed by one of the authors. We derive equations which describe the fluctuations of particle number and phase, and the growth of the Bose-Einstein condensate. The equilibrium state of the condensate is a mixture of states with different numbers of particles and quasiparticles. It is not a quantum superposition of states with different numbers of particles---nevertheless, the stationary state exhibits the property of off-diagonal long range order, to the extent that this concept makes sense in a tightly trapped condensate.Comment: 3 figures submitted to Physical Review

    A particle-number-conserving Bogoliubov method which demonstrates the validity of the time-dependent Gross-Pitaevskii equation for a highly condensed Bose gas

    Get PDF
    The Bogoliubov method for the excitation spectrum of a Bose-condensed gas is generalized to apply to a gas with an exact large number N N of particles. This generalization yields a description of the Schr\"odinger picture field operators as the product of an annihilation operator AA for the total number of particles and the sum of a ``condensate wavefunction'' ξ(x)\xi(x) and a phonon field operator χ(x)\chi(x) in the form ψ(x)A{ξ(x)+χ(x)/N}\psi(x) \approx A\{\xi(x) + \chi(x)/\sqrt{N}\} when the field operator acts on the N particle subspace. It is then possible to expand the Hamiltonian in decreasing powers of N\sqrt{N}, an thus obtain solutions for eigenvalues and eigenstates as an asymptotic expansion of the same kind. It is also possible to compute all matrix elements of field operators between states of different N.Comment: RevTeX, 11 page

    Trends of reported outpatient malaria cases to assess the Test, Treat and Track (T3) policy in Kenya

    Get PDF
    Background: Kenya reports over six million malaria cases annually. In 2012 the country adopted the Test, Treat and Track (T3) policy to ensure that all suspected malaria cases are tested, confirmed cases are treated with quality-assured drugs and timely accurate malaria surveillance are in place to guide policy and practice.Objective: To describe the trends of confirmed outpatient malaria cases and the consumption of artemisinin-based combination therapy (ACT) in the government health facilities in Kenya following the roll out of the T3 initiative.Design: A retrospective review study.Setting: All government health facilities in the 47 counties.Subjects: Secondary data on all outpatient malaria cases and ACT consumed as reported in the District Helth Information Software (DHIS).Results: Total malaria cases decreased from 8.5 to 6.8million cases in 2012 and 2015, respectively. Confirmed malaria cases increased from 1.97 (23%) to 4.9 (72%) million cases. The greatest decrease in total malaria cases and the greatest rise in confirmation of suspected cases occurred in the lower level health facilities. More confirmation of suspected cases occurred in the malaria endemic regions compared to other epidemiological zones. Excess ACT consumption reduced by 46% to reach 27% in 2015.Conclusion: Though there was increased confirmation of suspected malaria, still onethird of the outpatients were treated clinically in 2015. About one-third of ACTs were also used in excess in 2015. There is need for enhanced efforts to adhere to the T3 policy and malaria elimination guidelines

    Quenched chiral logarithms in lattice QCD with exact chiral symmetry

    Full text link
    We examine quenched chiral logarithms in lattice QCD with overlap Dirac quark. For 100 gauge configurations generated with the Wilson gauge action at β=5.8 \beta = 5.8 on the 83×24 8^3 \times 24 lattice, we compute quenched quark propagators for 12 bare quark masses. The pion decay constant is extracted from the pion propagator, and from which the lattice spacing is determined to be 0.147 fm. The presence of quenched chiral logarithm in the pion mass is confirmed, and its coefficient is determined to be δ=0.203±0.014 \delta = 0.203 \pm 0.014 , in agreement with the theoretical estimate in quenched chiral perturbation theory. Further, we obtain the topological susceptibility of these 100 gauge configurations by measuring the index of the overlap Dirac operator. Using a formula due to exact chiral symmetry, we obtain the η \eta' mass in quenched chiral perturbation theory, mη=(901±64) m_{\eta'} = (901 \pm 64) Mev, and an estimate of δ=0.197±0.027 \delta = 0.197 \pm 0.027 , which is in good agreement with that determined from the pion mass.Comment: 24 pages, 6 EPS figures; v2: some clarifications added, to appear in Physical Review

    Scaling behavior of the overlap quark propagator in Landau gauge

    Get PDF
    The properties of the momentum space quark propagator in Landau gauge are examined for the overlap quark action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice spacings and similar physical volumes to explore the approach of the quark propagator toward the continuum limit. We have calculated the nonperturbative momentum-dependent wave function renormalization function Z(p) and the nonperturbative mass function M(p) for a variety of bare quark masses and perform an extrapolation to the chiral limit. We find the behavior of Z(p) and M(p) are in reasonable agreement between the two finer lattices in the chiral limit, however the data suggest that an even finer lattice is desirable. The large momentum behavior is examined to determine the quark condensate.Comment: 9 pages, 5 figures, Revtex 4. Streamlined presentation, additional data. Final versio

    Instantons and Scalar Multiquark States: From Small to Large N_c

    Full text link
    We study scalar quark-anti-quark and two-quark-two-anti-quark correlation functions in the instanton liquid model. We show that the instanton liquid supports a light scalar-isoscalar (sigma) meson, and that this state is strongly coupled to both (qˉq)(\bar{q}q) and (qˉq)2(\bar{q}q)^2. The scalar-isovector a0a_0 meson, on the other hand, is heavy. We also show that these properties are specific to QCD with three colors. In the large NcN_c limit the scalar-isoscalar meson is not light, and it is mainly coupled to (qˉq)(\bar{q}q).Comment: 24 page

    Kaon B Parameter in Quenched QCD

    Full text link
    I calculate the kaon B-parameter with a lattice simulation in quenched approximation. The lattice simulation uses an action possessing exact lattice chiral symmetry, an overlap action. Computations are performed at two lattice spacings, about 0.13 and 0.09 fm (parameterized by Wilson gauge action couplings beta=5.9 and 6.1) with nearly the same physical volumes and quark masses. I describe particular potential difficulties which arise due to the use of such a lattice action in finite volume. My results are consistent with other recent lattice determinations using domain-wall fermions.Comment: 23 pages, Revtex, 16 postscript figure

    Chiral Analysis of Quenched Baryon Masses

    Get PDF
    We extend to quenched QCD an earlier investigation of the chiral structure of the masses of the nucleon and the delta in lattice simulations of full QCD. Even after including the meson-loop self-energies which give rise to the leading and next-to-leading non-analytic behaviour (and hence the most rapid variation in the region of light quark mass), we find surprisingly little curvature in the quenched case. Replacing these meson-loop self-energies by the corresponding terms in full QCD yields a remarkable level of agreement with the results of the full QCD simulations. This comparison leads to a very good understanding of the origins of the mass splitting between these baryons.Comment: 23 pages, 6 figure
    corecore