200 research outputs found
Octet baryon electromagnetic form factors in nuclear medium
We study the octet baryon electromagnetic form factors in nuclear matter
using the covariant spectator quark model extended to the nuclear matter
regime. The parameters of the model in vacuum are fixed by the study of the
octet baryon electromagnetic form factors. In nuclear matter the changes in
hadron properties are calculated by including the relevant hadron masses and
the modification of the pion-baryon coupling constants calculated in the
quark-meson coupling model. In nuclear matter the magnetic form factors of the
octet baryons are enhanced in the low region, while the electric form
factors show a more rapid variation with . The results are compared with
the modification of the bound proton electromagnetic form factors observed at
Jefferson Lab. In addition, the corresponding changes for the bound neutron are
predicted.Comment: Version accepted for publication in J.Phys. G. Few changes. 40 pages,
14 figures and 8 table
IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000yeats cal BP
The IntCal04 and Marine04 radiocarbon calibration curves have been updated from 12 cal kBP (cal kBP is here defined as thousands of calibrated years before AD 1950), and extended to 50 cal kBP, utilizing newly available data sets that meet the IntCal Working Group criteria for pristine corals and other carbonates and for quantification of uncertainty in both the 14C and calendar timescales as established in 2002. No change was made to the curves from 0–12 cal kBP. The curves were constructed using a Markov chain Monte Carlo (MCMC) implementation of the random walk model used for IntCal04 and Marine04. The new curves were ratified at the 20th International Radiocarbon Conference in June 2009 and are available in the Supplemental Material at www.radiocarbon.org
The Red Sea, Coastal Landscapes, and Hominin Dispersals
This chapter provides a critical assessment of environment, landscape and resources in the Red Sea region over the past five million years in relation to archaeological evidence of hominin settlement, and of current hypotheses about the role of the region as a pathway or obstacle to population dispersals between Africa and Asia and the possible significance of coastal colonization. The discussion assesses the impact of factors such as topography and the distribution of resources on land and on the seacoast, taking account of geographical variation and changes in geology, sea levels and palaeoclimate. The merits of northern and southern routes of movement at either end of the Red Sea are compared. All the evidence indicates that there has been no land connection at the southern end since the beginning of the Pliocene period, but that short sea crossings would have been possible at lowest sea-level stands with little or no technical aids. More important than the possibilities of crossing the southern channel is the nature of the resources available in the adjacent coastal zones. There were many climatic episodes wetter than today, and during these periods water draining from the Arabian escarpment provided productive conditions for large mammals and human populations in coastal regions and eastwards into the desert. During drier episodes the coastal region would have provided important refugia both in upland areas and on the emerged shelves exposed by lowered sea level, especially in the southern sector and on both sides of the Red Sea. Marine resources may have offered an added advantage in coastal areas, but evidence for their exploitation is very limited, and their role has been over-exaggerated in hypotheses of coastal colonization
IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP
Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2004. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 46 (2004): 1029-1058.A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed
and internationally ratified to replace IntCal98, which extended from 0–24 cal kyr BP (Before Present, 0 cal BP = AD 1950).
The new calibration data set for terrestrial samples extends from 0–26 cal kyr BP, but with much higher resolution beyond
11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0–12.4 cal kyr BP.
Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric
equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4–26.0 cal kyr BP. A
substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk
model, which takes into account the uncertainty in both the calendar age and the 14C age to calculate the underlying calibration
curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here.
The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief,
but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr
BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue)
Vanadium: a re-emerging environmental hazard
Vanadium (V) is a contaminant which has been long confined to the annals of regulatory history. This follows the reduction of its historical primary source (fossil fuel emissions) since the 1970s (e.g., by 80% in the UK). However, V is quickly becoming an important strategic resource which promises its return to environmental prominence because of changing industrial practices and emerging waste streams. We discuss below (i) what makes V a re-emerging environmental and human health hazard of global interest, (ii) the knowledge gaps that currently restrict prediction of environmental effect and mitigation, and (iii) opportunities for the community to address these gaps toward reducing the risk of an impending environmental hazard
Transmission of Aerosolized Seasonal H1N1 Influenza A to Ferrets
Influenza virus is a major cause of morbidity and mortality worldwide, yet little quantitative understanding of transmission is available to guide evidence-based public health practice. Recent studies of influenza non-contact transmission between ferrets and guinea pigs have provided insights into the relative transmission efficiencies of pandemic and seasonal strains, but the infecting dose and subsequent contagion has not been quantified for most strains. In order to measure the aerosol infectious dose for 50% (aID50) of seronegative ferrets, seasonal influenza virus was nebulized into an exposure chamber with controlled airflow limiting inhalation to airborne particles less than 5 µm diameter. Airborne virus was collected by liquid impinger and Teflon filters during nebulization of varying doses of aerosolized virus. Since culturable virus was accurately captured on filters only up to 20 minutes, airborne viral RNA collected during 1-hour exposures was quantified by two assays, a high-throughput RT-PCR/mass spectrometry assay detecting 6 genome segments (Ibis T5000™ Biosensor system) and a standard real time RT-qPCR assay. Using the more sensitive T5000 assay, the aID50 for A/New Caledonia/20/99 (H1N1) was approximately 4 infectious virus particles under the exposure conditions used. Although seroconversion and sustained levels of viral RNA in upper airway secretions suggested established mucosal infection, viral cultures were almost always negative. Thus after inhalation, this seasonal H1N1 virus may replicate less efficiently than H3N2 virus after mucosal deposition and exhibit less contagion after aerosol exposure
- …